Evaluation of X-Y coupling / Requirements on correction

Y. Ohnishi

The 14th KEKB Accelerator Review Committee 10/Feb/2009

Outline

- Introduction
 - Estimation of vertical beam size from luminosity
 - Simulation with machine error (see Apendix)
- Chromaticity Turn-by-turn BPM analysis -
- Twiss-chromaticity at IP
- R-chromaticity at IP
- Method of a X-Y coupling measurement
- Summary of X-Y coupling
- Miscellaneous

Specific luminosity Estimation of vertical beam size

INTRODUCTION

Y. Ohnishi / KEK, KEKB Review 2009

Estimation of vertical beam size with dynamic effect

Y. Ohnishi / KEK, KEKB Review 2009

Comparison of vertical beam size

- Estimated value from luminosity
 - 1.1 μm at 0.6 mA² -> 1.6 μm at 1.5 mA²
 - increased by ~50 %
 - $k = \epsilon_y / \epsilon_x = 0.5$ % at the low bunch current products.
- SRM measurement
 - 1.8/1.8 μm at 0.6 mA² -> 2.8/2.4 μm at 1.5 mA²
 - increased by ~50 %
- Blowup rate is similar each other except for absolute values.
- The coupling parameter, k is small at the small bunch current ?.

Chromaticity Twiss-chromaticity R-chromaticity Method of X-Y coupling measurement Summary of X-Y coupling

TURN-BY-TURN BPM ANALYSIS AT KEKB EXPERIMENTS

Chromaticity

Measured by single-pass BPMs using a horizontal kicker

Y. Ohnishi / KEK, KEKB Review 2009

Twiss-chromaticity : Measurements

$$\alpha_{x,IP} = -0.016$$
$$\frac{\partial \alpha_{x,IP}}{\partial \delta} = 15.2$$

 $\beta_{x,IP} = 1.29 m$ $\frac{\partial \beta_{x,IP}}{\partial \delta} = 1.4$

0.002

R-chromaticity : Measurements

R-chromaticity : Measurements (cont'd)

ChiSquare = 20.9973 Goodness = .13691

ChiSquare = 7.86198 Goodness = .92920

Accuracy of BPM is not enough for r_1 and r_2 . (V-mode is necessary.)

Y. Ohnishi / KEK, KEKB Review 2009

X-Y coupling (1)

Transformation from a decoupled coordinate to a physical coordinate:

$$\begin{pmatrix} x \\ x' \\ y \\ y' \end{pmatrix} = \begin{pmatrix} \mu & 0 & r_4 & -r_2 \\ 0 & \mu & -r_3 & r_1 \\ -r_1 & -r_2 & \mu & 0 \\ -r_3 & -r_4 & 0 & \mu \end{pmatrix} \begin{pmatrix} X \\ X' \\ Y \\ Y' \end{pmatrix} \qquad \mu^2 + (r_1 r_4 - r_2 r_3) = 1$$

Г

When Y=0 and Y'=0 (H-mode):

$$x = \mu X$$

$$x' = \mu X'$$

$$y = -r_1 X - r_2 X'$$

$$y' = -r_3 X - r_4 X'$$

$$X = \sqrt{2J_x} \beta_x \cos \psi_x$$

$$X' = -\sqrt{\frac{2J_x}{\beta_x}} (\alpha_x \cos \psi_x + \sin \psi_x)$$
This induces a vertical betatron oscillation.

X-Y coupling (2)

$$\begin{bmatrix} 1 \end{bmatrix} \quad y = -r_1 X - r_2 X' \\ = \left(-r_1 \sqrt{2J_x \beta_x} + r_2 \sqrt{\frac{2J_x}{\beta_x}} \alpha_x \right) \cos \psi_x + r_2 \sqrt{\frac{2J_x}{\beta_x}} \sin \psi_x \\ = A \cos \psi_x + B \sin \psi_x \\ = \sqrt{A^2 + B^2} \sin(\psi_x + \phi) \quad \text{Phase is important.}$$

$$\begin{cases} \sin \phi = \frac{A}{\sqrt{A^2 + B^2}} \\ \cos \phi = \frac{B}{\sqrt{A^2 + B^2}} \end{cases}$$

$$A = -r_1 \frac{x_{amp}}{\mu} + r_2 \frac{x'_{amp}}{\mu} \sin \theta = y_{amp} \sin \phi$$

$$B = r_2 \frac{x_{amp}}{\mu} \cos \theta = y_{amp} \cos \phi$$

$$r_1 = -\mu \frac{y_{amp}}{x_{amp}} \sin \phi + r_2 \frac{x'_{amp}}{x_{amp}} \sin \theta$$

$$r_2 = \mu \frac{y_{amp}}{x'_{amp}} \frac{\cos \phi}{\cos \theta}$$

When $\alpha_x=0$ at IP, sin $\theta=0$ and cos $\theta=1$.

 $X' = -\sqrt{\frac{2J_x}{\beta_x} (1 + \alpha_x^2)} \sin(\psi_x + \theta)$ $\sin\theta = \frac{\alpha_x}{\sqrt{1 + \alpha_x^2}} \quad \cos\theta = \frac{1}{\sqrt{1 + \alpha_x^2}}$

 x_{amp} , x'_{amp} , y_{amp} , ϕ , θ can be obtained from single-pass BPMs.

The ratio of amplitudes and phase provides an information of X-Y coupling.

X-Y coupling (3)

[2]
$$y' = -r_3 X - r_4 X'$$

$$= \left(-r_3 \sqrt{2J_x \beta_x} + r_4 \sqrt{\frac{2J_x}{\beta_x}} \alpha_x \right) \cos \psi_x + r_4 \sqrt{\frac{2J_x}{\beta_x}} \sin \psi_x$$

$$= C \cos \psi_x + D \sin \psi_x$$

$$= \sqrt{C^2 + D^2} \sin(\psi_x + \varphi) \quad \text{Phase is important.}$$

$$\begin{cases} \sin \varphi = \frac{C}{\sqrt{C^2 + D^2}} \\ \cos \varphi = \frac{D}{\sqrt{C^2 + D^2}} \end{cases}$$

$$C = -r_3 \frac{x_{amp}}{\mu} + r_4 \frac{x'_{amp}}{\mu} \sin \theta = y'_{amp} \sin \varphi$$

$$D = r_4 \frac{x'_{amp}}{\mu} \cos \theta = y'_{amp} \cos \varphi$$

$$r_3 = -\mu \frac{y'_{amp}}{x_{amp}} \sin \varphi + r_4 \frac{x'_{amp}}{x_{amp}} \sin \theta$$

$$r_4 = \mu \frac{y'_{amp}}{x'_{amp}} \frac{\cos \varphi}{\cos \theta}$$

When $\alpha_x = 0$ at IP, $\sin\theta = 0$ and $\cos\theta = 1$.

 $X' = -\sqrt{\frac{2J_x}{\beta_x} (1 + \alpha_x^2)} \sin(\psi_x + \theta)$ $\sin\theta = \frac{\alpha_x}{\sqrt{1 + \alpha_x^2}} \quad \cos\theta = \frac{1}{\sqrt{1 + \alpha_x^2}}$

 x_{amp} , x'_{amp} , y'_{amp} , ϕ , θ can be obtained from single-pass BPMs.

The ratio of amplitudes and phase provides an information of X-Y coupling.

Reconstruction of phase space

Phase space (x,x',y,y') at IP is reconstructed by using neighbor single-pass BPMs (location: QCS-L and QCS-R)

 M_L , M_R is a transfer matrix from IP to the single-pass BPM. The model is used.

Experiments

Date: 2008/Dec/14

Beam oscillation is induced by a horizontal kicker. Phase space plots at IP reconstructed by two BPMs(QCS-L and QCS-R)

$$\alpha_x = \tan \theta$$

 $\beta_x = \frac{x_{amp}}{x_{amp}} \frac{1}{\cos\theta}$ Ratio of an

Ratio of amplitudes and phase

Horizontal tune is near half integer.

Y. Ohnishi / KEK, KEKB Review 2009

Twiss-chromaticity : Measurements

5.63396 p2 =

p2 = 10427.7 +/- 7878.23

ChiSquare = 5.34723 Goodness = .61767 p0 = 1.89478 +/- .01084 p1 = 54.1768 +/- 9.19350

p2 = 18034.0 +/- 12890.0

Date: 2008/Dec/12

Y. Ohnishi / KEK, KEKB Review 2009

R-chromaticity : Measurements

ChiSquare = 18.8450 Goodness = .00869

p0 = -.03484 +/- .00462

ChiSquare = 15.8588 Goodness = .02644

$$r_{3,IP} = 0.0012 \ m^{-1}$$
$$\frac{\partial r_3}{\partial \delta} = -74 \ m^{-1}$$

coupling (BPM coordinate) R1 @IP (1 = 0.30 mrad) R2 @IP (1 = 0.54 mm)R3 @IP (1 = 24.69 km^{-1}) R4 @IP (1 = 38.63 mrad)

$$r_{4,IP} = -0.03$$
$$\frac{\partial r_4}{\partial \delta} = -51$$

p2 = 9670.86 +/- 6229.61

Date: 2008/Dec/12

p1 = -51.430 +/- 5.11463

R-chromaticity : Measurements

ChiSquare = 3.00474 Goodness = .88456

p0 = -.32387 +/- .08366

p1 = 47.6748 +/- 62.2849

p2 = 136100. + - 93220.3

ChiSquare = 2.20045 Goodness = .94792 p0 = -.40835 +/- .13471 p1 = 0

p1 = 63.0786 +/- 102.388

p2 = 90882.6 +/- 153160.

Date: 2008/Dec/12

Accuracy of BPM is not enough for r_1 and r_2 . (V-mode is necessary.)

Y. Ohnishi / KEK, KEKB Review 2009

Summary of X-Y coupling

x(n), x'(n), y(n), y'(n) are fitted by a linear combination of *cosine* and *sine* with an exponential damping. Resol. at each BPM is ~100 μm.

- Model transfer matrix is used in this analysis. 1000 turns are used or analysis.

• Twiss parameters, α_x and β_x can be obtained from x(n) and x'(n):

$$X'(n) = -\sqrt{\frac{2J_x}{\beta_x} (1 + \alpha_x^2) \sin(2\pi v_x n + \psi_{x0} + \theta) \exp(-\Gamma n)} \qquad \alpha_x = \tan \theta$$

$$\sin \theta = \frac{\alpha_x}{\sqrt{1 + \alpha_x^2}} \qquad \cos \theta = \frac{1}{\sqrt{1 + \alpha_x^2}} \qquad \beta_x = \frac{x_{amp}}{x'_{amp}} \frac{1}{\cos \theta}$$

– If the location is IP, $\alpha_{\rm x}$ is zero in the model.

• Uncertainty about μ . If r_1 and r_2 is small, μ is 1 approximately.

$$u^{2} + (r_{1}r_{4} - r_{2}r_{3}) = 1$$

$$X_{amp} = x_{amp}$$

$$X'_{amp} = x'_{amp}$$

$$r_{4} = \frac{y'_{amp}}{x'_{amp}} \cos \varphi$$

$$The ratio of amplitudes and phase provides an information of X-Y coupling.$$

Y. Ohnishi / KEK, KEKB Review 2009

Summary of X-Y coupling (cont'd)

 The global X-Y coupling measurement is sensitive to r₁ and r₂, but less sensitive to r₃ and r₄.

- The X-Y coupling, r_3 and r_4 at IP are large in LER(14/Dec/2008), which are estimated by single-pass BPMs. Accuracy is not enough for r_1 and r_2 . If r_1 and r_2 are well corrected, σ_v/σ_x should be small. However σ'_v/σ'_x might be large.
- R-chromaticity can be measured by changing rf frequency which is similar to chromaticity measurements.
- IP tilt knob can correct r₃ and r₄.
 - Skew sextupoles are needed to correct the R-chromaticity.

References

- D. Sagan and D. Rubin, PHYSICAL REVIEW SPECIAL TOPICS ACCELERATORS AND BEAMS, VOLUME **2, 074001 (1999)**.
- Y. Ohnishi, Y. Funakoshi, K. Mori, E. Perevedentsev, M. Tanaka, M. Tejima, M. Tobiyama, Measurement of xy coupling using turn-by-turn BPM at KEKB, EPAC2000.
- D. Rubin, "AC" dispersion measurement, ILCDR08.

LER damping rate Head-Tail damping Smearing effect due to nonlinearity

MISCELLANEOUS

LER Damping Rate

Measured by single-pass BPMs

ChiSquare = 1.45790 Goodness = .48241

p1 = 7.23E-4 +/- 7.10E-5

p2 = 2.48E-4 +/- 3.32E-5

Y. Ohnishi / KEK, KEKB Review 2009

Head-Tail Damping (LER)

Head – Tail Damping

$$\Gamma_{HT} = \frac{\sqrt{\pi} \langle \beta \rangle I_b Z_\perp \xi}{(E_b/e) \alpha_p}$$
(1/turn)

$$\left<\beta\right> = \frac{R}{\nu_{\beta}} = \frac{C}{2\pi\nu_{\beta}}$$

LER transverse impedance: $Z_{\perp} = 17 \pm 2 \text{ k}\Omega\text{m}$

Y. Ohnishi / KEK, KEKB Review 2009

Nonlinearity at off-momentum

SIMULATION WITH MACHINE ERROR

KEKB HER optics: Beta05_14_2008_22:07:34i

 $\varepsilon_x = 24 \text{ nm}$

 $\beta_{x}^{*} = 0.9 \text{ m}$

 $\beta_v^* = 5.9 \text{ mm}$

 $v_x = 44.5138$

 $v_{y} = 41.590$

Machine Errors

	σ _{Δx,rms} (μm)	σ _{Δy,rms} (μm)	$\sigma_{\!\Delta\theta,rms}$ (mrad)	$\sigma_{\Delta K/K,rms}$
Quad	100	meas. ^{*2}	meas. ^{*2}	1x10 ⁻⁴
Skew Quad	100	meas. ^{*2}	meas.*2	1x10 ⁻⁴
Sextupole	100	extrapolation+100	0.1	1x10 ⁻⁴
BPM ^{*1}	100	extrapolation+100	-	-
Steering	100	extrapolation+100	0.1	-

*1) BPM jitter error : $\sigma_{\Delta x, \Delta y, rms}$ = 2 μm *2) Measured by MG group

Machine Error and Optics Correction : Simulations

Sample of X-Y coupling correction

Emittance ratio : Simulations

Beam size is less than 1 μm at IP

Emittance ratio is less than 0.5 %.

After the optics correction, the optics seems to be better condition.

X-Y coupling at IP : Simulations

	average	standard	deviation	*IP tilt knob
r_*	0.00086	0.00105	3 units*	
r ₂ * (m)	0.00125	0.00122	3 units	
r ₃ * (1/m)	-0.01217	0.15403	6 units	Large residuals
r ₄ *	0.21266	0.54331	23 units	

The r_1 and r_2 are well corrected, however r_3 and r_4 are scattered.

Dynamic Effect $\epsilon_{x} = 18 \text{ nm } v_{x} = 0.508$ 70 Emittance (nm) 60 50 40 30 20 10 1.5 0 2 0.05 0 0.1 Horizontal beta (m) 1 0.5 0 0.05 0.15 0 1 0.2 Horizontal beam size (μm) 150 100 weak dependence of tune shift 50 °ò 0.05 0.15 0.1 0.2 Beam-Beam Tune Shift

Y. Ohnishi / KEK, KEKB Review 2009

Dynamic Beta

Beam size measured by SRM

Vertical beam size ~2.8/2.4 μm for LER/HER (Crab ON, 1.5 mA²).

c.f. Estimated value is 1.6 μm