ISSUES ON THE UPGRADE FEB 9, 2009 K. Oide @ 14th KEKB-ARC

I. Coherent Synchrotron Radiation Revisited

2. Travel Waist Scheme / IR Design / Crab Crossing

3. Construction & Running Costs

4. Italian Option

CSR REVISITED

- Coherent Synchrotron Radiation (CSR) in SuperKEKB has been studied by T. Agoh since 2004 as reported at KEKB ARC.
- An independent estimation was done in 2008, which takes realistic shape of the beam pipe and other impedances into account.
- Confirmed the results by Agoh.
- Heavy impact on the design parameters of SuperKEKB.

MAXWELL'S EQUATIONS

$$\begin{aligned} \frac{1}{r} \frac{\partial r E_{\phi}}{\partial r} - \frac{1}{r} \frac{\partial E_{r}}{\partial \phi} &= -\frac{\partial B_{y}}{\partial t} \\ \frac{1}{r} \frac{\partial E_{y}}{\partial \phi} - \frac{\partial E_{\phi}}{\partial y} &= -\frac{\partial B_{r}}{\partial t} \\ \frac{\partial E_{r}}{\partial y} - \frac{\partial E_{y}}{\partial r} &= -\frac{\partial B_{\phi}}{\partial t} \\ \frac{1}{r} \frac{\partial r B_{\phi}}{\partial r} - \frac{1}{r} \frac{\partial B_{r}}{\partial \phi} &= \mu_{0} j_{y} + \frac{1}{c^{2}} \frac{\partial E_{y}}{\partial t} \\ \frac{1}{r} \frac{\partial B_{y}}{\partial \phi} - \frac{\partial B_{\phi}}{\partial y} &= \mu_{0} j_{r} + \frac{1}{c^{2}} \frac{\partial E_{r}}{\partial t} \\ \frac{\partial B_{r}}{\partial y} - \frac{\partial B_{y}}{\partial r} &= \mu_{0} j_{\phi} + \frac{1}{c^{2}} \frac{\partial E_{\phi}}{\partial t} \\ \frac{1}{r} \frac{\partial r E_{r}}{\partial r} + \frac{1}{r} \frac{\partial E_{\phi}}{\partial \phi} + \frac{\partial E_{y}}{\partial y} &= \frac{\rho}{\varepsilon_{0}} \end{aligned}$$

 $j_r = j_y = 0, \qquad j_\phi = \rho c$

 $\frac{\partial}{\partial r} \frac{1}{r} \frac{\partial r E_r}{\partial r} + \frac{1}{r^2} \frac{\partial^2 E_r}{\partial \phi^2} + \frac{\partial^2 E_r}{\partial y^2} - \frac{1}{c^2} \frac{\partial^2 E_r}{\partial t^2} - \frac{2}{r^2} \frac{\partial E_{\phi}}{\partial \phi} = \frac{1}{\varepsilon_0} \frac{\partial \rho}{\partial r}$ $\frac{\partial}{\partial r} \frac{1}{r} \frac{\partial r E_{\phi}}{\partial r} + \frac{1}{r^2} \frac{\partial^2 E_{\phi}}{\partial \phi^2} + \frac{\partial^2 E_{\phi}}{\partial y^2} - \frac{1}{c^2} \frac{\partial^2 E_{\phi}}{\partial t^2} + \frac{2}{r^2} \frac{\partial E_r}{\partial \phi} = \frac{1}{\varepsilon_0} \left(\frac{1}{r} \frac{\partial \rho}{\partial \phi} + \frac{1}{c} \frac{\partial \rho}{\partial t} \right)$

MAXWELL'S EQUATIONS

- $\frac{\partial}{\partial r}\frac{1}{r}\frac{\partial rE_r}{\partial r} + \frac{1}{r^2}\frac{\partial^2 E_r}{\partial \phi^2} + \frac{\partial^2 E_r}{\partial y^2} \frac{1}{c^2}\frac{\partial^2 E_r}{\partial t^2} \frac{2}{r^2}\frac{\partial E_{\phi}}{\partial \phi} = \frac{1}{\varepsilon_0}\frac{\partial \rho}{\partial r}$ $\frac{\partial}{\partial r}\frac{1}{r}\frac{\partial rE_{\phi}}{\partial r} + \frac{1}{r^2}\frac{\partial^2 E_{\phi}}{\partial \phi^2} + \frac{\partial^2 E_{\phi}}{\partial y^2} \frac{1}{c^2}\frac{\partial^2 E_{\phi}}{\partial t^2} + \frac{2}{r^2}\frac{\partial E_r}{\partial \phi} = \frac{1}{\varepsilon_0}\left(\frac{1}{r}\frac{\partial \rho}{\partial \phi} + \frac{1}{c}\frac{\partial \rho}{\partial t}\right)$
 - $\rho \propto \delta(r R)\delta(y) \exp\left(ik(R\phi ct)\right)$ $E_{r,\phi} = \overline{E}_{r,\phi}(\phi) \exp\left(ik(R\phi ct)\right)$

$$\begin{aligned} \overline{E}_r &= \overline{E}_r + \overline{E}_{r0} \ ,\\ \frac{\partial}{\partial r} \frac{1}{r} \frac{\partial r \overline{E}_{r0}}{\partial r} + \frac{\partial^2 \overline{E}_{r0}}{\partial y^2} = \frac{1}{\varepsilon_0} \frac{\partial \rho}{\partial r} \end{aligned}$$

$$\bigstar \text{ Ignore } \frac{\partial^2 \overline{E}}{\partial \phi^2} \text{ terms (AgoH-YokoYA)}$$

MAXWELL'S EQUATIONS

THEN WE OBTAIN FIRST ORDER DIFFERENTIAL EQUATIONS FOR $\overline{E}_{r,\phi}$.

$$\begin{aligned} \frac{\partial \overline{E}_{r}}{\partial \phi} &= \frac{i}{2(k^{2}R^{2}-1)} \left[kR \left(\left(k^{2}(r^{2}-R^{2})+1\right) (\overline{E}_{r}+\overline{E}_{r0})+r \frac{\partial}{\partial r} (\overline{E}_{r}+\overline{E}_{r0})+r^{2} \left(\frac{\partial^{2}\overline{E}_{r}}{\partial r^{2}}+\frac{\partial^{2}\overline{E}_{r}}{\partial y^{2}} \right) \right) \\ &+ \left(k^{2}(r^{2}+R^{2})-1\right) \overline{E}_{\phi}+r \frac{\partial \overline{E}_{\phi}}{\partial r}+r^{2} \left(\frac{\partial^{2}\overline{E}_{\phi}}{\partial r^{2}}+\frac{\partial^{2}\overline{E}_{\phi}}{\partial y^{2}} \right) \right] \\ \frac{\partial \overline{E}_{\phi}}{\partial \phi} &= \frac{i}{2(k^{2}R^{2}-1)} \left[kR \left(\left(k^{2}(r^{2}-R^{2})+1\right) \overline{E}_{\phi}+r \frac{\partial \overline{E}_{\phi}}{\partial r}+r^{2} \left(\frac{\partial^{2}\overline{E}_{\phi}}{\partial r^{2}}+\frac{\partial^{2}\overline{E}_{\phi}}{\partial y^{2}} \right) \right) \\ &+ \left(k^{2}(r^{2}+R^{2})-1\right) (\overline{E}_{r}+\overline{E}_{r0})+r \frac{\partial}{\partial r} (\overline{E}_{r}+\overline{E}_{r0})+r^{2} \left(\frac{\partial^{2}\overline{E}_{r}}{\partial r^{2}}+\frac{\partial^{2}\overline{E}_{r}}{\partial y^{2}} \right) \right] \end{aligned}$$

* Further Approximation is possible as Agoh-Yokoya did, but not done here.

SOLVER

$$egin{array}{rll} \displaystyle rac{dm{f}}{d\phi} &=& Am{f}+m{b}\;, \qquad m{f}=(\overline{E}_r,\overline{E}_\phi)\;, \ m{f}(\phi) &=& m{f}_0\exp(A\phi)+m{b}\int_0^\phi\exp\left(A(\phi'-\phi)
ight)d\phi' \end{array}$$

*An uniform shape of the beam pipe has been assumed, A: Spatial differentiation matrix with boundary condition b: driving term by \overline{E}_{r0} . *The exponent is evaluated by the eigen system of A. *The mesh size for A varies with k.

$$\Delta x = \Delta y = \frac{(R/k^2)^{1/3}}{M} , \qquad M \gtrsim 4$$

Calculation of coherent synchrotron radiation using mesh

T. Agoh and K. Yokoya

FIG. 4. (Color) The longitudinal electric field E_s in transient state with shielding. The chamber size is $w \times h = 10 \text{ cm} \times 10 \text{ cm}$. The other parameters are the same as in Fig. 3.

RESULTS(I.I) WAKE FIELD

RESULTS(2): WAKES OF SUPERKEKB ANTECHAMBERS

INTEGRATE TO INFINITY, ASSUMING DAMPING BY SURFACE RESISTIVITY.

✦ RESULT DOES NOT DEPEND ON THE RESISTIVITY UNLESS DAMPING IS TOO STRONG.

CROSS SECTIONS BY Y. SUETSUGU

rAC = 35 mm, rho = (B2P) m, s = (B2P) + (res)

4 Sep 2008

TRACKING SIMULATION OF BUNCH STABILITY

- Sum up all wakes, calculated by Suetsugu, Tobiyama, Shibata, and Satoh.
- TiN coated resistive wall: σ = 1.4 ($\mu\Omega$ m)⁻¹ thickness = 0.2 μ m, given by Hisamatsu and Suetsugu.
- SuperLER parameters.
- 400,000 macro particles.

rac = 45 mm, rho = (B2P) m, s = (B2P) + (res), TiN

rac = 45 mm

rac = 35 mm(*), rho = (B2P) m, s = (B2P) + (res), TiN Number of bends = 150

* Some wakes are scaled from a = 45 mm by 1/a.

rac = 25 mm(*), rho = (B2P) m, s = (B2P) + (res), TiN Number of bends = 150

* Some wakes are scaled from a = 45 mm by 1/a.

SuperLER, CSR+RW(TiN)+Gap+MMask+Bellows+ARES(Satoh)+BPM+SRM+PUMPS, rac = 45 mm, # of bends = 150, Haissinski*1.6

No wigglers

No wigglers

RESULTS WITH "OIDE-YOKOYA" METHOD

 \star This method is more powerful in predicting the threshold than estimating the magnitude of blowup beyond that.

REMARKS & QUESTIONS

- Effect on W(z) from the straight is quite large. Is this reasonable?
 - Some modes have damping length > 1,000 km.
 - What about in the case of other wakes?
 - The pair of bends, separated by 6 m, does not help.
- Even the bending radius becomes 4 times longer, the wake does not reduce much.

Pseudo Wiggler: 152 poles

Pseudo Wiggler: 152 poles, 25 mm

45 mm All

ALL WAKES, INCL. WIGGLERS

ALL WAKES (45 MM), INCL. WIGGLERS

ALL WAKES (35 MM), INCL. WIGGLERS

ALL WAKES (25 MM), INCL. WIGGLERS

ALL WAKES (25 MM), INCL. WIGGLERS

ALL WAKES (45 MM), INCL. WIGGLERS NEGATIVE ALPHA

HER

HER

negative alpha

TENTATIVE DESIGN PARAMETERS

		zero bunch current	design bunch current	
IFR	σ _z	5	6	mm
	σε	7.1	8.0	10-4
LER neg. alpha	σz	4.5	5.3	mm
	σε	7.1	8.5	10-4
HER	σz	3	3.6	mm
	σε	6.8	7.0	10-4
HER neg. alpha	σz	3	3.1	mm
	σε	6.8	7.7	10-4

HOW MUCH IS THE IMPACT ON THE LUMINOSITY?

	LER σ_z (mm)	$\beta_{x}^{*}(cm)$	Lum. (10 ³⁵)
No CSR	3	40	~5
longer σ z by CSR	5	40	~2
+ LER travel waist	5	40	~4
+ smaller β_{x}^{*}	5	20	~6

by K. Ohmi (luminosities may be corrected in the following talk)

TRAVEL WAIST SCHEME

- Known technique for a linear collider (Balakin, et al).
- Move vertical waist backward along z.

N.Walker

- Two crab cavities, each sits in the middle of -I pair of sextupoles, are necessary for a ring.
- Very hard to accommodate them in the HER.

LER TRAVEL WAIST LATTICE

LER DYNAMIC APERTURE WITH TRAVEL WAIST H. Koiso

RF ON Crab OFF, OFF, ON sext thickness: 0.334 m K2= 0, +-1.846

Acceptance Ax = 7.5e-6 m Ay = 1.2e-6 m $\Delta p/p = 0.003$

IR ISSUES

See presentations by Koiso, Ohuchi, Kanazawa, Iwasaki

- No consistent solution has been found yet for $\beta_{x}^{*} = 20$ cm.
- A solution may exist for $\beta_{x}^{*} = 40$ cm, with consistent physical aperture, dynamic beta, injection, Belle acceptance, and synchrotron light.
- A new design of final focus magnets will be critical.
- Technical issues for assembly remain to be solved.

COST ESTIMATION (IN OKU-YEN = 1.1 M\$)

	Old estimation Full Spec SuperKEKB	Construction (for 3 years)	Upgrade during operation	Total
Vacuum	116.86	139.36	0	139.36
RF	115.873	16.45	84.25	100.7
Infrastructure	84.3	3	75.2	78.2
Magnet	16.7008	31.9	0	31.9
Crab	17	5	10	15
Beam monitor	17.4684	17.7	4.5	22.2
Injector	58	10	53.7	63.7
Damping Ring (other than RF, monitor)	16.8	0	21.26	21.26
Control	9.4	2	7.4	9.4
IR	8	14.7	0	14.7
Beam transport	2.5	2.5	0	2.5
Total Construction	462.9022	242.61	256.31	498.92
Running cost / year				80 + overhead

NEIGHBOR'S LAWN LOOKS GREENER?

If we can preserve the HER lattice and the beam pipe, the construction cost reduces to less than half.

) t s i n ti n	C) r i i i i i i i i i i i i i i i i i i	Present scheme	Italian Option	remarks
Vacuum		139.36	70	only LER
RF		100.7	10	HOM absorber, low level control
Infrastructure		78.2	?	
Magnet		31.9	50	LER low emittance
Crab		15	-	
Beam monitor		22.2	30	
Injector		63.7	20	No charge switch
Damping Ring (other than RF, monitor)		21.26	22	necessary
Control		9.4	9.4	
IR		14.7	20	
Beam transport		2.5	2.5	
Total Construction		498.92	233.9	
Running cost / year		80 + OH	60 +OH	

COMPARISON OF MACHINE PARAMETERS

P. Raimondi

		SuperB (Upgrade)	SuperKEKB		
Emittance	ε _×	0.8	9	nm	
Horizontal beta	β_{\times}^{*}	20	200	mm	
Vertical beta	β_y^*	0.2	Outline ts (March-Sept.2005 nd layout optimization based on	mm	
Horizontal beam size	$\sigma_{\!X}^{*}$	4 [*] Parameters a Minimal-Dist	42	μm	
Bunch length	σ_{z}	6 Optimization Status of the		mm	
Half crossing angle	ф×	17 ^{conclusions}	I 5	mrad	
Piwinski angle	φ	25.5		rad	
Current(LER/HER)	l _b	3.95/2.17	10.4/4.4	А	
Luminosity (x10 ³⁵)	L	24	8.25	cm ⁻² s ⁻¹	

Compatibility with Italian option LER arc cell Preliminary

$\varepsilon_x = 6.8 \text{ nm}$

 $\varepsilon_x = 2.2 \text{ nm}$

- The arc cell lattice of the KEKB LER (left) can be modified to the low-emittance version (right), by weakening the magnetic field of the dipoles.
- No need for changing other components, beam pipes, geometry.
- The interaction region must be rebuilt.

H. Koiso

WE NEED ADVICE FROM YOU.

- What about an idea to raise the priority of the detailed design work with an Italian option for SuperKEKB?
 - parameters
 - beam-beam simulation
 - IR design
 - lattice, dynamic aperture, beam lifetime, injection, ...
 - crab waist
 - beam diagnostics and control, emittance & collision tuning, ...
 - and more ...