ISSUES ONTHE UPGRADE

FEB 9, 2009
K. Oide @ 14th KEKB-ARC
I. Coherent Synchrotron Radiation Revisited
2. Travel Waist Scheme / IR Design / Crab Crossing
3. Construction \& Running Costs
4. Italian Option

CSR REVISITED

- Coherent Synchrotron Radiation (CSR) in SuperKEKB has been studied by T. Agoh since 2004 as reported at KEKB ARC.
- An independent estimation was done in 2008, which takes realistic shape of the beam pipe and other impedances into account.
- Confirmed the results by Agoh.
- Heavy impact on the design parameters of SuperKEKB.

MAXWELL'S EQUATIONS

$$
\begin{aligned}
\frac{1}{r} \frac{\partial r E_{\phi}}{\partial r}-\frac{1}{r} \frac{\partial E_{r}}{\partial \phi} & =-\frac{\partial B_{y}}{\partial t} \\
\frac{1}{r} \frac{\partial E_{y}}{\partial \phi}-\frac{\partial E_{\phi}}{\partial y} & =-\frac{\partial B_{r}}{\partial t} \\
\frac{\partial E_{r}}{\partial y}-\frac{\partial E_{y}}{\partial r} & =-\frac{\partial B_{\phi}}{\partial t} \\
\frac{1}{r} \frac{\partial r B_{\phi}}{\partial r}-\frac{1}{r} \frac{\partial B_{r}}{\partial \phi} & =\mu_{0} j_{y}+\frac{1}{c^{2}} \frac{\partial E_{y}}{\partial t} \\
\frac{1}{r} \frac{\partial B_{y}}{\partial \phi}-\frac{\partial B_{\phi}}{\partial y} & =\mu_{0} j_{r}+\frac{1}{c^{2}} \frac{\partial E_{r}}{\partial t} \\
\frac{\partial B_{r}}{\partial y}-\frac{\partial B_{y}}{\partial r} & =\mu_{0} j_{\phi}+\frac{1}{c^{2}} \frac{\partial E_{\phi}}{\partial t} \\
\frac{1}{r} \frac{\partial r E_{r}}{\partial r}+\frac{1}{r} \frac{\partial E_{\phi}}{\partial \phi}+\frac{\partial E_{y}}{\partial y} & =\frac{\rho}{\varepsilon_{0}}
\end{aligned}
$$

$$
\frac{\partial}{\partial r} \frac{1}{r} \frac{\partial r E_{r}}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} E_{r}}{\partial \phi^{2}}+\frac{\partial^{2} E_{r}}{\partial y^{2}}-\frac{1}{c^{2}} \frac{\partial^{2} E_{r}}{\partial t^{2}}-\frac{2}{r^{2}} \frac{\partial E_{\phi}}{\partial \phi}=\frac{1}{\varepsilon_{0}} \frac{\partial \rho}{\partial r}
$$

$$
\frac{\partial}{\partial r} \frac{1}{r} \frac{\partial r E_{\phi}}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} E_{\phi}}{\partial \phi^{2}}+\frac{\partial^{2} E_{\phi}}{\partial y^{2}}-\frac{1}{c^{2}} \frac{\partial^{2} E_{\phi}}{\partial t^{2}}+\frac{2}{r^{2}} \frac{\partial E_{r}}{\partial \phi}=\frac{1}{\varepsilon_{0}}\left(\frac{1}{r} \frac{\partial \rho}{\partial \phi}+\frac{1}{c} \frac{\partial \rho}{\partial t}\right)
$$

MAXWELL'S EQUATIONS

$$
\begin{gathered}
\frac{\partial}{\partial r} \frac{1}{r} \frac{\partial r E_{r}}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} E_{r}}{\partial \phi^{2}}+\frac{\partial^{2} E_{r}}{\partial y^{2}}-\frac{1}{c^{2}} \frac{\partial^{2} E_{r}}{\partial t^{2}}-\frac{2}{r^{2}} \frac{\partial E_{\phi}}{\partial \phi}=\frac{1}{\varepsilon_{0}} \frac{\partial \rho}{\partial r} \\
\frac{\partial}{\partial r} \frac{1}{r} \frac{\partial r E_{\phi}}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} E_{\phi}}{\partial \phi^{2}}+\frac{\partial^{2} E_{\phi}}{\partial y^{2}}-\frac{1}{c^{2}} \frac{\partial^{2} E_{\phi}}{\partial t^{2}}+\frac{2}{r^{2}} \frac{\partial E_{r}}{\partial \phi}=\frac{1}{\varepsilon_{0}}\left(\frac{1}{r} \frac{\partial \rho}{\partial \phi}+\frac{1}{c} \frac{\partial \rho}{\partial t}\right) \\
\rho \propto \delta(r-R) \delta(y) \exp (i k(R \phi-c t)) \\
E_{r, \phi}=\bar{E}_{r, \phi}(\phi) \exp (i k(R \phi-c t)) \\
\bar{E}_{r}=\bar{E}_{r}+\bar{E}_{r 0}, \\
\frac{\partial}{\partial r} \frac{1}{r} \frac{\partial r \bar{E}_{r 0}}{\partial r}+\frac{\partial^{2} \bar{E}_{r 0}}{\partial y^{2}}=\frac{1}{\varepsilon_{0}} \frac{\partial \rho}{\partial r}
\end{gathered}
$$

\star Ignore $\frac{\partial^{2} \bar{E}}{\partial \phi^{2}}$ terms (AgoH-YokoYA)

MAXWELL'S EQUATIONS

THEN WE OBTAIN FIRST ORDER DIFFERENTIAL EQUATIONS FOR $\bar{E}_{r, \phi}$.

$$
\begin{aligned}
\frac{\partial \bar{E}_{r}}{\partial \phi}= & \frac{i}{2\left(k^{2} R^{2}-1\right)}\left[k R\left(\left(k^{2}\left(r^{2}-R^{2}\right)+1\right)\left(\bar{E}_{r}+\bar{E}_{r 0}\right)+r \frac{\partial}{\partial r}\left(\bar{E}_{r}+\bar{E}_{r 0}\right)+r^{2}\left(\frac{\partial^{2} \bar{E}_{r}}{\partial r^{2}}+\frac{\partial^{2} \bar{E}_{r}}{\partial y^{2}}\right)\right)\right. \\
& \left.+\left(k^{2}\left(r^{2}+R^{2}\right)-1\right) \bar{E}_{\phi}+r \frac{\partial \bar{E}_{\phi}}{\partial r}+r^{2}\left(\frac{\partial^{2} \bar{E}_{\phi}}{\partial r^{2}}+\frac{\partial^{2} \bar{E}_{\phi}}{\partial y^{2}}\right)\right] \\
\frac{\partial \bar{E}_{\phi}}{\partial \phi}= & \frac{i}{2\left(k^{2} R^{2}-1\right)}\left[k R\left(\left(k^{2}\left(r^{2}-R^{2}\right)+1\right) \bar{E}_{\phi}+r \frac{\partial \bar{E}_{\phi}}{\partial r}+r^{2}\left(\frac{\partial^{2} \bar{E}_{\phi}}{\partial r^{2}}+\frac{\partial^{2} \bar{E}_{\phi}}{\partial y^{2}}\right)\right)\right. \\
& \left.+\left(k^{2}\left(r^{2}+R^{2}\right)-1\right)\left(\bar{E}_{r}+\bar{E}_{r 0}\right)+r \frac{\partial}{\partial r}\left(\bar{E}_{r}+\bar{E}_{r 0}\right)+r^{2}\left(\frac{\partial^{2} \bar{E}_{r}}{\partial r^{2}}+\frac{\partial^{2} \bar{E}_{r}}{\partial y^{2}}\right)\right]
\end{aligned}
$$

* Further Approximation is possible as Agoh-Yokoya did, but not done here.

SOLVER

$$
\begin{aligned}
\frac{d \boldsymbol{f}}{d \phi} & =A \boldsymbol{f}+\boldsymbol{b}, \quad \boldsymbol{f}=\left(\bar{E}_{r}, \bar{E}_{\phi}\right) \\
\boldsymbol{f}(\phi) & =\boldsymbol{f}_{0} \exp (A \phi)+\boldsymbol{b} \int_{0}^{\phi} \exp \left(A\left(\phi^{\prime}-\phi\right)\right) d \phi^{\prime}
\end{aligned}
$$

* An uniform shape of the beam pipe has been assumed,
A : Spatial differentiation matrix with boundary condition
\boldsymbol{b} : driving term by $\bar{E}_{r 0}$.
*The exponent is evaluated by the eigen system of A.
* The mesh size for A varies with k.

$$
\Delta x=\Delta y=\frac{\left(R / k^{2}\right)^{1 / 3}}{M}, \quad M \gtrsim 4
$$

RESULTS(I) ELECTRIC FIELD

$\mathrm{w}=\mathrm{h}=10 \mathrm{~cm}, \mathrm{rho}=10 \mathrm{~m}, \mathrm{~s}=0.8 \mathrm{~m}, \mathrm{sigz}=0.3 \mathrm{~mm}$, omax $=3 /$ sigz, nomega $=40$, varmesh $($ dlim $/ 4)$

$\mathrm{w}=\mathrm{h}=10 \mathrm{~cm}, \mathrm{rho}=10 \mathrm{~m}, \mathrm{~s}=1 \mathrm{~m}, \operatorname{sigz}=0.3 \mathrm{~mm}$ omax $=3 /$ sigz, nomega $=40$, varmesh $(\mathrm{dlim} / 4)$

THE TRANSIENT ELECTRIC FIELD

 FOR A SQUARE PIPE AGREES WITH AGOH-YOKOYA'S VERY WELL.PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS VOLUME 7, 054403 (2004)

FIG. 4. (Color) The longitudinal electric field E_{s} in transient state with shielding. The chamber size is $w \times h=10 \mathrm{~cm} \times 10 \mathrm{~cm}$. The other parameters are the same as in Fig. 3.

RESULTS(I.I) WAKE FIELD

Pipe height $=94 \mathrm{~mm}$, Pipe width $=94 \mathrm{~mm}$, TiN thickness $=.2 \mu \mathrm{~m}$, TiN Cond. $=1.4(\mu \Omega \mathrm{~m})^{-1}$, Maximum $\mathrm{k}=3.5 / \sigma_{z}$, \# of $\mathrm{k}=32$, Mesh Ratio $=4, \sigma_{z}=.3 \mathrm{~mm}$

wake field for 3 mm bunch

Pipe height $=40 \mathrm{~mm}$, Pipe width $=40 \mathrm{~mm}$, TiN thickness $=.2 \mu \mathrm{~m}$, TiN Cond. $=1.4(\mu \Omega \mathrm{~m})^{-1}$

THE WAKE FIELD FOR A SQUARE PIPE ALSO AGREES WITH T. AGOH'S VERY WELL.

Square Pipe

$r=$ Half height

SuperKEKB Parameters

$$
\begin{aligned}
& \sigma_{z}=3 \mathrm{~mm} \\
& I_{b}=2 \mathrm{~mA} \\
& (N e=20 \mathrm{nC})
\end{aligned}
$$

RESULTS(2):WAKES OF SUPERKEKB ANTECHAMBERS

$a=45 \mathrm{~mm}$

$a=25 \mathrm{~mm}$
rac $=45 \mathrm{~mm}$, rho $=(\mathrm{B} 2 \mathrm{P}) \mathrm{m}, \mathrm{s}=(\mathrm{B} 2 \mathrm{P})+(\mathrm{res})$, sigz $=0.3 \mathrm{~mm}$, omax $=3.5 /$ sigz, nomega $=32$, varmesh $($ dlim/4)

2 Sep 2008

$$
\mathrm{rAC}=35 \mathrm{~mm}, \mathrm{rho}=(\mathrm{B} 2 \mathrm{P}) \mathrm{m}, \mathrm{~s}=(\mathrm{B} 2 \mathrm{P})+(\mathrm{res})
$$

Pipe height $=35 \mathrm{~mm}$, Pipe width $=184 \mathrm{~mm}$,
Maximum $k=3.5 / \sigma_{z}$, \# of $k=32$, Mesh Ratio $=4, \sigma_{z}=.3 \mathrm{~mm}$

4 Sep 2008
rac $=25 \mathrm{~mm}$, rho $=(\mathrm{B} 2 \mathrm{P}) \mathrm{m}, \mathrm{s}=(\mathrm{B} 2 \mathrm{P})+(\mathrm{res})$, sigz $=0.3 \mathrm{~mm}$, omax $=3.5 /$ sigz, nomega $=32$, varmesh $($ dlim/4)

4 Sep 2008

TRACKING SIMULATION OF BUNCH STABILITY

- Sum up all wakes, calculated by Suetsugu, Tobiyama, Shibata, and Satoh.
- TiN coated resistive wall: $\sigma=1.4(\mu \Omega \mathrm{~m})^{-1}$ thickness $=0.2 \mu \mathrm{~m}$, given by Hisamatsu and Suetsugu.
- SuperLER parameters.
- 400,000 macro particles.
rac $=45 \mathrm{~mm}$, rho $=(\mathrm{B} 2 \mathrm{P}) \mathrm{m}, \mathrm{s}=(\mathrm{B} 2 \mathrm{P})+(\mathrm{res}), \mathrm{TiN}$
Number of bends $=150$

10 Sep 2008

Number of bends $=150$

* Some wakes are scaled from a $=45 \mathrm{~mm}$ by I/a.

10 Sep 2008
rac $=25 \mathrm{~mm}\left(^{*}\right)$, rho $=(\mathrm{B} 2 \mathrm{P}) \mathrm{m}, \mathrm{s}=(\mathrm{B} 2 \mathrm{P})+(\mathrm{res}), \mathrm{TiN}$ Number of bends $=150$

* Some wakes are scaled from a $=45 \mathrm{~mm}$ by I/a.

Turn 45501
Pipe height $=90 \mathrm{~mm}$, Pipe width $=184 \mathrm{~mm}$,

Particles $/$ bunch $=1.1734 \times 10^{11}, \mathrm{c}$ Damping $/$ turn $=3.6 \times 10^{-4}$, Macro F

1.9
1.8
1.7

10 Sep 2008

SuperLER, CSR+RW(TiN)+Gap+MMask+Bellows+ARES(Satoh)+BPM+SRM+PUMPS, rac $=45 \mathrm{~mm}$, \# of bends $=$ I 50, Haissinski* I. 6

Particles $/$ bunch $=1.1734 \times 10^{11}, \sigma_{80}=.0713 \%, \sigma_{20}=3 \mathrm{~mm}, R 56=-.57774 \mathrm{~m}, R 65=.03248 / \mathrm{m}$,

10 Sep 2008

Pipe height $=90 \mathrm{~mm}$, Pipe width $=184 \mathrm{~mm}$,
Particles /bunch $=\left\{0,1.1734 \times 10^{11}\right\}, \sigma_{80}=.0713 \%, \sigma_{z 0}=3 \mathrm{~mm}, R 56=-.57774 \mathrm{~m}, R 65=.03248 / \mathrm{m}$, Damping / turn $=3.6 \times 10^{-4}$, Macro Particles $=0$, Wake division/turn $=2$, Bin size $=.28125 \mathrm{~mm}$

RESULTS WITH "OIDE-YOKOYA" METHOD

$$
\mathrm{rac}=45 \mathrm{~mm}
$$

$$
\begin{aligned}
M_{j m j^{\prime} m^{\prime}}= & m^{2} \omega_{j}^{2} \delta_{j j^{\prime}} \delta_{m m^{\prime}}+\frac{k}{\pi} m m^{\prime} \omega_{j} \omega_{j^{\prime}}\left(-g_{j}^{\prime} \Delta J_{j}\right)^{1 / 2}\left(-g_{j^{\prime}}^{\prime} \Delta J_{j^{\prime}}\right)^{1 / 2} \\
& \times \int_{0}^{2 \pi} \int_{0}^{2 \pi} \cos m \phi \cos m^{\prime} \phi^{\prime} F\left(q\left(J_{j^{\prime}}, \phi^{\prime}\right)-q\left(J_{j}, \phi\right)\right) d \phi d \phi^{\prime}
\end{aligned}
$$

This method is more powerful in predicting the threshold than estimating the magnitude of blowup beyond that.

REMARKS \& QUESTIONS

- Effect on $\mathrm{W}(z)$ from the straight is quite large. Is this reasonable?
- Some modes have damping length > I,000 km.
- What about in the case of other wakes?
- The pair of bends, separated by 6 m , does not help.
- Even the bending radius becomes 4 times longer, the wake does not reduce much.

Pseudo Wiggler: 152 poles

Pipe height $=90 \mathrm{~mm}$, Pipe width $=224 \mathrm{~mm}$, TiN thickness $=.2 \mu \mathrm{~m}$, TiN Cond. $=1.4(\mu \Omega \mathrm{~m})^{-1}$, Maximum $\mathrm{k}=3.5 / \sigma_{\mathrm{z}}$, \# of $\mathrm{k}=32$, Mesh Ratio $=4, \sigma_{\mathrm{z}}=.3 \mathrm{~mm}$

23 Sep 2008

Pseudo Wiggler: I 52 poles, 25 mm

Plpe height $=50 \mathrm{~mm}$, Plpe width $=224 \mathrm{~mm}$, TIN thickness $=.2 \mu \mathrm{~m}$, TIN Cond. $=1.4(\mu \Omega \mathrm{~m})^{-1}$, Maximum $k=3.5 / \sigma_{z}$, \# of $k=32$, Mesh Ratio $=4, \sigma_{z}=.3 \mathrm{~mm}$

26 Sep 2008

45 mm All

23 Sep 2008

ALL WAKES, INCL.WIGGLERS

23 Sep 2008

ALL WAKES (45 MM), INCL.WIGGLERS

Pipe height $=90 \mathrm{~mm}$, Pipe width $=184 \mathrm{~mm}$,

26 Sep 2008

ALL WAKES (35 MM), INCL.WIGGLERS

Pipe height $=70 \mathrm{~mm}$, Pipe width $=184 \mathrm{~mm}$,

7 Oct 2008

ALL WAKES (25 MM), INCL.WIGGLERS

8 Oct 2008

ALL WAKES (25 MM), INCL.WIGGLERS

8 Oct 2008

ALL WAKES (45 MM), INCL.WIGGLERS NEGATIVE ALPHA

Pipe height $=90 \mathrm{~mm}$, Pipe width $=184 \mathrm{~mm}$,

9 Oct 2008

HER

Pipe height $=90 \mathrm{~mm}$, Pipe width $=184 \mathrm{~mm}$,

Pipe height $=90 \mathrm{~mm}$, Pipe width $=184 \mathrm{~mm}$,
Particles $/$ bunch $=\left\{0,5.11804 \times 10^{10}\right\}, \sigma_{\delta 0}=.0676 \%, \sigma_{z 0}=3 \mathrm{~mm}, R 56=.42762 \mathrm{~m}, \mathrm{R} 65=-.02166 / \mathrm{m}$, Damping $/$ turn $=4.3 \times 10^{-4}$, Macro Particles $=400000$, Wake division $/$ turn $=2$, Bin size $=.3 \mathrm{~mm}$

9 Oct 2008

TENTATIVE DESIGN PARAMETERS

		zero bunch current	design bunch current	
LER	σ_{z}	5	6	mm
	σ_{ε}	7.1	8.0	10^{-4}
	σ_{z}	4.5	5.3	mm
	σ_{ε}	7.1	8.5	10^{-4}
	σ_{z}	3	3.6	mm
	σ_{ε}	6.8	7.0	10^{-4}
HER	σ_{z}	3	3.1	mm
neg. alpha	σ_{ε}	6.8	7.7	10^{-4}

HOW MUCH IS THE IMPACT ONTHE LUMINOSITY?

	LER $\sigma_{z}(\mathrm{~mm})$	$\beta_{x}{ }^{*}(\mathrm{~cm})$	Lum. $\left(10^{35}\right)$
No CSR	3	40	~ 5
longer σ_{z} by CSR	5	40	~ 2
+ LER travel waist	5	40	~ 4
+ smaller $\beta_{\times}{ }^{*}$	5	20	~ 6

by K. Ohmi (luminosities may be corrected in the following talk)

TRAVEL WAIST SCHEME

- Known technique for a linear collider (Balakin, et al).
- Move vertical waist backward along z.

N. Walker
- Two crab cavities, each sits in the middle of -I pair of sextupoles, are necessary for a ring.
- Very hard to accommodate them in the HER.

LER TRAVEL WAIST LATTICE

$$
\begin{aligned}
& \begin{array}{l}
\infty \\
0 \\
-10 \\
00 \\
-1
\end{array} \\
& \begin{array}{l}
n 00 \\
\underset{\sim}{2} \underset{\sim}{2} \\
\sim
\end{array} \\
& \beta x / y @ S X=15 / 350 \mathrm{~m} \\
& \text { Sext - crab-Sext } \quad \beta \text { x @ crab }=50 \mathrm{~m} \\
& \text { Sext - Sext = -I' Vcrab = 1.56 MV } \\
& K 2=-1.846 \mathrm{~m}^{-2} \\
& \text { Sext - crab - Sext } \\
& \text { Sext - Sext = -l' } \\
& K 2=-1.846 \mathrm{~m}^{-2}
\end{aligned}
$$

LER DYNAMIC APERTURE WITH TRAVEL WAIST

RF ON
Crab OFF, OFF, ON
sext thickness: 0.334 m
$$
K 2=0,+-1.846
$$

Acceptance
$A x=7.5 \mathrm{e}-6 \mathrm{~m}$ $A y=1.2 e-6 m$ $\Delta \mathrm{p} / \mathrm{p}=0.003$

IR ISSUES

See presentations by Koiso, Ohuchi, Kanazawa, Iwasaki

- No consistent solution has been found yet for $\beta_{x}{ }^{*}=20 \mathrm{~cm}$.
- A solution may exist for $\beta_{x}{ }^{*}=40 \mathrm{~cm}$, with consistent physical aperture, dynamic beta, injection, Belle acceptance, and synchrotron light.
- A new design of final focus magnets will be critical.
- Technical issues for assembly remain to be solved.

COST ESTIMATION

Preliminary
(IN OKU-YEN = $1.1 \mathrm{M} \$$)

	Old estimation Ful spec SuperkekB	Construction (for 3 years)	Upgrade during operation	Total
Vacuum	116.86	139.36	0	139.36
RF	115.873	16.45	84.25	100.7
Infrastructure	84.3	3	75.2	78.2
Magnet	16.7008	31.9	0	31.9
Crab	17	5	10	15
Beam monitor	17.4684	17.7	4.5	22.2
Injector	58	10	53.7	63.7
Damping Ring (other than RF, monitor)	16.8	0	21.26	21.26
Control	9.4	2	7.4	9.4
IR	8	14.7	0	14.7
Beam transport	2.5	2.5	0	2.5
Total Construction	462.9022	242.61	256.31	498.92
Running cost / year				80 + overhead

NEIGHBOR'S LAWN LOOKS GREENER?

	Present scheme	Italian Option	remarks
Vacuum	139.36	70	only LER
RF	100.7	10	HOM absorber, low level control
Infrastructure	78.2	?	
Magnet	31.9	50	LER low emittance
Crab	15	-	
Beam monitor	22.2	30	
Injector	63.7	20	No charge switch
Damping Ring (other than RF, monitor)	21.26	22	necessary
Control	9.4	9.4	
IR	14.7	20	
Beam transport	2.5	2.5	
Total Construction	498.92	233.9	
Running cost / year	$80+\mathrm{OH}$	$60+\mathrm{OH}$	

COMPARISON OF MACHINE PARAMETERS

Compatibility with Italian option

LER arc cell

L bend $=0.9 \mathrm{~m}$

$$
\varepsilon_{\mathrm{x}}=6.8 \mathrm{~nm}
$$

Preliminary

$\varepsilon_{\mathrm{x}}=2.2 \mathrm{~nm}$

- The arc cell lattice of the KEKB LER (left) can be modified to the low-emittance version (right), by weakening the magnetic field of the dipoles.
- No need for changing other components, beam pipes, geometry.
- The interaction region must be rebuilt.

WE NEED ADVICE FROMYOU.

- What about an idea to raise the priority of the detailed design work with an Italian option for SuperKEKB?
- parameters
- beam-beam simulation
- IR design
- lattice, dynamic aperture, beam lifetime, injection, ...
- crab waist
- beam diagnostics and control, emittance \& collision tuning, ...
- and more ...

