

Belle / Belle II

Takeo Higuchi

IPNS, KEK Belle Collaboration

Topics on the Belle Operation

Raw Data Grand Reprocess

Grand reprocess of Belle raw data

- Track finding efficiency \uparrow
 - Track finding algorithm is switched from Conformal to Hough transformation method.
 - Reconst. efficiency: +7% for $J/\psi K_s(\pi^+\pi^-)$, +60% for $D^{*+}D^{*-}$ (no π^0).
- γ/π^0 efficiency \uparrow
 - ECL *E* threshold is changed from constant to azimuth-angle dependent.
 - Reconst. efficiency: +10% for $J/\psi K_s(\pi^0\pi^0)$, +22% for $D^{*0}(D^0\pi^0)\pi^-$
- Several minor modifications, corrections

All grand reprocess efforts have completely converged

- Exp#41-55 (372 fb⁻¹): released on Dec.24,2009.
- Exp#31-39, 65, 69 (241 fb⁻¹): released on Feb.9,2010.

Additional COPPERs to Belle DAQ

- COPPER readout system consists of:
 - Common R/O platform: COPPER
 - Signal digitizer unit
 - COPPER R/O PC, slow control, etc ...

- COPPER system test in Belle beam operation for Belle II
 - KLM readout electronics changed from LeCroy FASTBUS TDCs to AMT-3 TDC + COPPER
 - Sequential timing signals from 3264 input channels are digitized by AMT-3 TDC on COPPER.
 - 34 COPPERs are newly installed.
 - 179 COPPERs have been working for Belle DAQ so far.

New Readout System for Belle II ECL

Readout system of Belle II ECL

- Pre-amplifier
- Shaper (shaping-time 0.5µs ... *E* measurement)
- Shaper (shaping-time 0.2µs ... trigger)
- ADC (18-bit, 2MHz)
- FPGA for waveform analysis
- Data collector binding FE and COPPER

- Prototype system test in Belle

- "Shaper + ADC" electronics
- On-COPPER electronics with FPGA for data RX and WFA

Prototype system test in Belle beam operation started since Oct.15,2009.

- New system under R&D
 - "Shaper + ADC + WFA FPGA" electronics

Topics on the Recent Physics Analyses

 $b \rightarrow s\ell^+\ell^-$

Physics motivation

- In the SM, the decay is mediated $b = b Z/\gamma$ penguin and W^+W^- box diagrams.
- Interference by NP particles to SM diagram may detect the NP, especially for Wilson coefficients: C_7 , C_9 , C_{10}
- $B \rightarrow K^{(*)}\ell^+\ell^-$ (exclusive)
 - Low-BG reconstruction
 - A_{FB}: fwd/bwd asymmetry
- $B \rightarrow X_s \ell^+ \ell^-$ (inclusive)
 - Low form-factor uncertainty in $B \rightarrow K$ decay
 - $d(Br)/d(q^2)$: differential branching fraction

in K*rest frame

$B \rightarrow K^{(*)}\ell^+\ell^-$ (exclusive)

- $K^{(*)}e^+e^-$ reconstruction $K^{(*)}$: $K^+\pi^-$, $K^+\pi^0$, $K_5\pi^+$, K^+ , $K_5 \begin{bmatrix} |\delta(m_{\pi^0})| < 18.5 \,\mathrm{MeV}/c^2, |\delta(m_{K_5^0})| < 15 \,\mathrm{MeV}/c^2 \\ |\delta(m_{K^*})| < 80 \,\mathrm{MeV}/c^2 \end{bmatrix}$
 - BG suppression: $(qq / \text{ semi-}\ell B \text{ decays})$: Fisher-discriminant, $\cos\theta$, etc

• A_{FR} as a function of $q^2 = M_{ee}^2 c^2$ for $\rightarrow K^* \ell^+ \ell^-$

 $A_{\rm FB}$ is determined for each of 6 q^2 regions by fitting $\theta_{B\ell}$ to distribution function including A_{FB} .

SM prediction

 $C_7 = -C_7^{SM}$ case

Hint of New Physics?

Phys. Rev. Lett. 103, 171801 (2009).

$B \rightarrow X_s \ell^+ \ell^-$ (inclusive)

• $X_s \ell^+ \ell^-$ reconstruction

- Xs: $K^+ + n\pi^{\pm} + m\pi^0 / K_s + n\pi^{\pm} + m\pi^0$
 - $n+m = 0 \dots 4, m = 0,1$
- $\ell^+\ell^-$: excluding J/ψ and $\psi(2S)$
- BG suppression as well.

– Peaking BG ($X_s c \overline{c}, X_s hh, X_s h \ell v$) and self cross feed \rightarrow sys.err.

Y(5S), Y(2S), Y(1S) Physics Analyses

• Y(5S) ... L=125 fb⁻¹: on-going analyses

- *Br*(Y(5S)→*BB*π(π)):
- $Br(B_s \rightarrow D_s^{(*)+} D_s^{(*)-})$:
- $Br(B_s \rightarrow D_s^*\pi, D_s^{(*)}\rho)$:
- Br(B_s→J/ψη^(')):
- $B_s \rightarrow J/\psi \varphi$:

information to Y(5S) resonance dynamics

- input to $\Delta \Gamma_s$ determination
- first meas. to be compared with B_d case

input to the time-dependent CPV analysis

time-dependent analysis to get $\Delta\Gamma_{c}/\Gamma_{c}$

 M_{bc} of $B_s \rightarrow J/\psi \varphi$ @ 24 fb⁻¹

• Y(2S), Y(1S) ... L=24.1 fb⁻¹, L=5.7 fb⁻¹: on-going analyses, efforts

- $Br(\eta_{bJ} \rightarrow J/\psi J/\psi)$: judgment of 2 existing Br model; (Y(2S) $\rightarrow_{Y}\eta_{bJ}$)

- Decay simulation tool of Y(1S) is being developed/tuned.

More and more are going on.

Y(4S) Physics Analyses (780fb⁻¹)

Time-dependent analyses

- Published: CPV in $B^0 \rightarrow D^{*+}D^{*-}$, CPV in $B^0 \rightarrow K^0 \pi^0_{\dots \text{ Accepted by PRD}}$
- On-going: CPV in $B^0 \rightarrow K^+ K^- K_s$, CPV in $B^0 \rightarrow \phi K_s \gamma$, CPTV in $B^0 \rightarrow J/\psi K^0$, $D^{(*)}h$, $D^* \ell \nu$
- Prospects: The final CPV in $B^0 \rightarrow (c\overline{c})K^0$ with full Y(4S) data for summer; ϕ_2 update, CPV in $b \rightarrow s$, CPV in *DD* for summer or later

• D^0 - \overline{D}^0 mixing analyses

- Toward summer 2010: $D^0 \rightarrow \pi^+\pi^-K_s, D^0 \rightarrow K^+K^-K_s$ Toward early 2011: $D^0 \rightarrow K^+\pi^-\pi^0, D^0 \rightarrow KK/\pi\pi$
- Rare-B-decay analyses

 $- B \rightarrow D^{+}\ell^{+}\ell^{-}, B \rightarrow \rho^{+}\omega, B \rightarrow \pi^{0}\pi^{0}, B \rightarrow \sqrt{\nu} \dots$

More and more are going on as well.

Hints of the New Physics

CP Violation in $b \rightarrow s$ Penguin

• Deviation of $b \rightarrow s CP$ -violating parameter from $b \rightarrow c$ indicates NP in the penguin loop

Belle ٦, $+0.10\pm0.04$.18 +0.03 BaBar -0.20 -0.04 Ľ, $B^0 \rightarrow J/\psi K^0 (b \rightarrow c)$ $B^0 \rightarrow \phi K^0, \eta' K^0 (b \rightarrow s)$ Belle $0.30 \pm 0.32 \pm 0.08$ Ľ Ŷ BaBar $0.55 \pm 0.20 \pm 0.03$ Belle $0.67 \pm 0.31 \pm 0.08$ +0.26 -0.31 ± 0.06 ± 0.03 Ľ. BaBar 0.35 J/w Belle \pm 0.09 \pm 0.10 ωK_s BaBar $0.55 \pm 0.26 \pm 0.02$ B⁰ B⁰ Belle $0.11 \pm 0.46 \pm 0.07$ 0.60 +0.16 BaBar K_{S}/K_{I} K_S/K Belle 0.60 +0.16 0 BaBar f, K 18 ₩ 0.52 + 0.06 + 0.10 BaBar $+0.52 \pm 0.07 \pm 0.07$ BaBa $\pi^0 \pi^0 K_s$ -0.72 ± 0.71 ± 0.08 $\phi \pi^0 K_s$ BaBar 0.97 +0.03 $-S_{h \to c} = S_{h \to s}^{SM}$ π⁺π⁻K_SNBBaBar 0.01 $\pm \ 0.31 \pm 0.05 \pm 0.09$ BaBar $0.86 \pm 0.08 \pm 0.03$ Y -0.68 ± 0.15 ± 0.03 +0.21 Belle Naïve average 0.62 ± 0.04 - W.A.: $S_{h \to s} = 0.62 \pm 0.04$ 1.3σ -2 -1 0 1 deviation - W.A.: $S_{h \to c} = 0.673 \pm 0.023$

 $\sin(2\beta^{\text{eff}}) \equiv \sin(2\phi_1^{\text{eff}})$

World Average

BaBar

Belle

BaBar

b→ccs

Ŷ

Ŷ

ndOfYear 200

 0.67 ± 0.02

0.67 +0.22

2

 $0.26 \pm 0.26 \pm 0.03$

 $0.57 \pm 0.08 \pm 0.02$

 $-\delta(S_{h\to s}) \simeq 0.012 @ 50ab^{-1}$

*K*π Puzzle in B^0/B^+ *CP* Violation

NP will violate above equation \rightarrow Measurements of 4 A_{CP}'s answer.

 $B^+ \rightarrow \tau^+ v_{\tau}$

If the decay is also mediated by *H*⁺, as well as *W* ⁺, the *Br* will deviate from the SM prediction.

$$Br\Big|_{\text{meas.}} = (1.73 \pm 0.35) \times 10^{-4}$$

$$Br\Big|_{\text{w/o}\ B \to \tau\nu}^{\text{CKMfit}} = (0.786^{+0.179}_{-0.083}) \times 10^{-4}$$

$$2.4\sigma$$

$$deviation$$

$$relation$$

Constraint on tan β and m_{H^+} relation is imposed.

δ(*Br*) ~2% @50 ab⁻¹

$D^0 - \overline{D}^0$ Mixing

Toward Belle II

Access to the New Physics by Belle II

nature of NP (e.g.: SUSY) hidden above TeV.

Belle II Detector

Vertex Detectors

2-layer DEPFET pixel 4-layer DSSD

Self tracking performance in very fwd/bwd region @ 1GeV/c

	PXD/SVD	PXD/SVD/CDC
FWD	69µm	54µm
BWD	38µm	30µm

B-meson efficiency \uparrow by acceptance increase

If PXD/SVD coverage increases from 92 to 94%

 $\mathrm{eff.}_{\scriptscriptstyle B}=34.5 \rightarrow 37.5\%$

IR design

Be pipe with 20mm/30mm diameter and with beam crossing angle 83mrad.

Central Drift Chamber

Longer lever arm Smaller cell

Geometrical parameters	(preliminary)
------------------------	---------------

Radius (mm)	160-1096	
Number of layers	58	
Number of sense wires	15104	

B-meson efficiency vs. background (MC)

 $B^0 \rightarrow J/\psi K_S$ reconstruction efficiency is not very degraded even in higher background.

bkg level	eff. (%)	eff. ratio - 1	eff. ratio - 1	
		wrt 1× bkg (%)	wrt Belle (%)	
$1 \times \text{bkg}$	58.7	$\equiv 0$	+11.3	
5 imes bkg	57.7	-1.7	+9.4	
20 imes bkg	53.6	-8.8	+ 1.5	
$1 \times$ bkg (Belle)	52.7	-	$\equiv 0$	

 Tracking performance was studied with beam test

Deadtime is to be suppressed by smaller cell, new R/O electronics, and software updates to maintain the present tracking efficiency under the higher BG.

Particle Identification

Barrel: TOP counter Endcap: Aerogel RICH

Theory of TOP operationIdentify particles by measuring propagation timeof Cherenkov light in quartz bar. $(aurtz radiator (Cherenkov angle <math>\theta_c$)K $(aurtz radiator (Cherenkov angle <math>\theta_c$) $(aurtz radiator (Cherenkov angle <math>\theta_c$)

TOP performance (MC)

Detector configuration and cylindrical layout are being studied to tune the performance.

Calorimetry and K_L/μ Detection

Calorimeter: B=CsI(Tℓ), E=CsI,BSO,PbWO₄ *K*_L/μ: B=RPC, E=Scintillator

ECL endcap baseline option: Csl(pure)

- CsI(pure) has shorter decay time than CsI(T^e).
- Pipeline readout w/ waveform analysis.
 - → Combined effect of shorter decay time and timing information suppresses fake clusters by factor 30;

Pileup noise will be reduced by factor 5.

Other ECL endcap options: BSO or PbWO₄

- Pro: better 2 shower resolution ...
- Con: mechanical strength ...

KLM endcap upgrade

RPC is replaced with scintillator strip + WLS + SiPM against higher background in endcap part.

Readout System

Belle II Short-Term Schedule

Technical design report

 The preliminary version of TDR will be released around the end of February (or beginning of March).

• The 5th open meeting of the Belle II collaboration

 The Belle II group meeting is held from March 31st to April 2nd to make an important step toward finalizing the detector design.

Belle II and LHCb

	Belle	Belle II	Belle II	LHCb
	~ 0.5 ab⁻¹	5 ab ⁻¹	50 ab⁻¹	10 fb ⁻¹ [5yrs]
ΔS(φ <i>K_s</i>)	0.22	0.073	0.029	0.14
ΔS(η′ <i>K_s</i>)	0.11	0.038	0.020	
φ _s from <i>S</i> (J/ψφ)	-	-	I	0.01
S(<i>K</i> *γ)	0.36	0.12	0.03	-
S(ργ)	0.68	0.22	0.08	-
Δ <i>Br/Br</i> (B→τν)	3.5 σ	10%	3%	-
Β₅→μμ	?	?	?	5σ @ 6 fb⁻¹
τ→μμ [x10 ⁻⁹]	<45	<30	<8	
τ→μμμ [x10 ⁻⁹]	<209	<10	<1	
φ ₂	11°	2°	1°	4.5°
φ ₃	16°	6°	2°	2.4 ^o

Belle II and LHCb would co-reveal the New Physics

- Belle II has advantages in modes with γ , π^0 ; modes with ν ; modes with K_s vertex reconstruction; ... ($B \rightarrow \tau \nu$, $b \rightarrow sq\overline{q}$, τ LFV...)

Summary

- Grand reprocess has been finished.
- Readout components of Belle II are tested in Belle.
- NP searches with $b \rightarrow s \ell^+ \ell^-$ are recently published.
- Belle has observed several hints of the NP to be revealed by Belle II.
- Significant efforts on Belle II upgrade are carried out.
- In a coming few weeks, we publish Belle II TDR.
- Belle II and LHCb would co-reveal the nature of the NP.

Backup

 $B^+ \rightarrow \tau^+ v_{\tau}$

As $B \rightarrow \tau v$ includes 2 or more neutrinos in decay, opposite side *B* needs fully reconstructed.

The "Big Two"

Energy frontier

Direct detection of SUSY particles

Mass spectra are insufficient to figure out the SUSY model.

Similar mass spectra show up across different SUSY models.

Luminosity frontier

Measurements between SUSY-SUSY and/or SUSY-SM interactions

Various analyses on B,τ,charm etc. decays enable to reveal the SUSY model.

OPE and Wilson Coefficient

 Effective Hamiltonian is expressed in term of Operator Product Expansion.

$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_{i=1}^{10} C_i(\mu) O_i(\mu)$$

- $O_{1,2}$: current current operator
- O₃₋₆: QCD penguin operator
- O₇: electro- magnetic operator
- *O*₈: chromo-magnetic operator
- *O*₉: semileptonic vector operator
- O₁₀: semileptonic axial vector operator
- C_i: Wilson coefficient
- Wilson coefficient is a strength of corresponding short distance operator.
- Precise measurement of Wilson coefficients is one of the goals for B physics.
- For $b \rightarrow s\gamma$ and $b \rightarrow \ell\ell$ case, only O_7 , O_9 and O_{10} appear in the Hamiltonian.

$$\begin{aligned} \mathcal{O}_{1} &= (\bar{s}_{\alpha}\gamma_{\mu}Lc_{\beta})(\bar{c}_{\beta}\gamma^{\mu}Lb_{\alpha}), \\ \mathcal{O}_{2} &= (\bar{s}_{\alpha}\gamma_{\mu}Lc_{\alpha})(\bar{c}_{\beta}\gamma^{\mu}Lb_{\beta}), \\ \mathcal{O}_{3} &= (\bar{s}_{\alpha}\gamma_{\mu}Lb_{\alpha})\sum_{q=u,d,s,c,b}(\bar{q}_{\beta}\gamma^{\mu}Lq_{\beta}), \\ \mathcal{O}_{4} &= (\bar{s}_{\alpha}\gamma_{\mu}Lc_{\beta})\sum_{q=u,d,s,c,b}(\bar{q}_{\beta}\gamma^{\mu}Rq_{\alpha}), \\ \mathcal{O}_{5} &= (\bar{s}_{\alpha}\gamma_{\mu}Lc_{\beta})\sum_{q=u,d,s,c,b}(\bar{q}_{\beta}\gamma^{\mu}Rq_{\alpha}), \\ \mathcal{O}_{6} &= (\bar{s}_{\alpha}\gamma_{\mu}Lc_{\beta})\sum_{q=u,d,s,c,b}(\bar{q}_{\beta}\gamma^{\mu}Rq_{\alpha}), \\ \mathcal{O}_{7} &= \frac{e}{16\pi^{2}}\bar{s}_{\alpha}\sigma_{\mu\nu}(m_{s}L+m_{b}R)b_{\alpha}F^{\mu\nu}, \\ \mathcal{O}_{8} &= \frac{g}{16\pi^{2}}\bar{s}_{\alpha}\sigma_{\mu\nu}(m_{s}L+m_{b}R)T^{a}_{\alpha\beta}b_{\beta}G^{a\mu\nu}, \\ \mathcal{O}_{9} &= \frac{e^{2}}{16\pi}\bar{s}_{\alpha}\gamma^{\mu}Lb_{\alpha}\bar{\ell}\gamma_{\mu}\ell, \\ \mathcal{O}_{10} &= \frac{e^{2}}{16\pi}\bar{s}_{\alpha}\gamma^{\mu}Lb_{\alpha}\bar{\ell}\gamma_{\mu}\gamma_{5}\ell, \end{aligned}$$

New Physics may change Wilson coefficients.