KEKB Review, 2010 February 16

Injector Upgrade Overview & Positron Source

KAMITANI Takuya e+/e- Injector Linac group, KEK

(1) Injector Upgade Overview

SuperKEKB Injector Linac Parameters

	KEKB (e+/e-) achieved	SuperKEKB (e+/e-) required	
beam energy	3.5 GeV / 8.0 GeV	4.0 GeV / 7.0 GeV	
stored current	1600 mA / 1200 mA	3600 mA / 2620 mA	
beam lifetime	150 min / 200 min	10 min / 10 min	
bunch charge	primary e ⁻ e ⁺ e ⁻ 10 -> 1.0 nC / 1.0 nC	primary e ⁻ e ⁺ e ⁻ 10 -> 4.0 nC / 5.0 nC	
# of bunches	2/2	2/2	
beam emittance (γε) [1σ]	2100 μm / 300 μm	10 μm / 20 μm	
energy spread $\sigma_{\rm E}/{\rm E}$	0.125 % / 0.05 %	0.07 % / 0.08 %	
bunch length σ_z	2.6 mm / 1.3 mm	0.5* mm / 1.3 mm	

*(assuming bunch compression after DR)

Injector Upgrade Strategy

KEKB Injector

SuperKEKB Injector

(2) Positron Source Upgade

Positron capture section upgrade

	present capt. section	L-band capt. section
accelerating structures	1m x 2 + 2m x 2 (=6m)	2m x 2 + 2m x 4 (=12m)
RF frequency	2856 MHz (λ=10.5cm)	1298 MHz (λ=23.1cm)
aperture of the structures	20 mm in diameter	30 mm in diameter
accel. field gradient	14.0 ~ 13.2 MV/m	10.0 MV/m
accel. phase	-30 deg	-30 deg
solenoid field (strong)	2.0 T x 45 mm QWT	6.0 T x 220 mm AMD
solenoid field (weak)	0.4 T x 7.9 m	0.4 T x 13.1 m
energy after capt. sec.	~ 80 MeV	~ 120 MeV

Increase e+ capture efficiency by enlarging these acceptances !
Iongitudinal acceptance by longer wave length of L-band RF
transverse acceptance by larger aperture of L-band structure

energy acceptance by adiabatic matching device
 => Flux concentrator or SuperConducting solenoid

prelim. simulation result by N. lida suggests Q_{e+} ~ 8 nC @ DR

flux concentrator (FLC) R&D

- R&D in collaboration with BINP
- prototype magnet, vacuum chamber & power supply fabricated at BINP
- operation test at BINP
 15x10⁶ pulses ~ 1 week
 No mechanical failure !!

FLC operation test at KEK

- prototype magnet, vacuum chamber & power supply are sent to KEK in Apr. 2010
- stand-alone operation test & field distribution measurement at KEKB linac klystron gallery in May-June 2010
- installation of FLC magnet into KEKB linac e+ source in Aug. 2010
- operation test from Sep. 2010 to Mar. 2011

mechanical stability will be tested and e⁺ yield performance will be studied with real KEKB linac 10 nC e⁻ beam

Superconducting (SC) solenoid R&D

- SC solenoid can yield high magnetic field as 6 Tesla.
- Superconducting state can be maintained only if J, B, T are below quench limit curve.
- Can SC solenoid survive under heating by intense radiation from e⁺ production target ?
- Is SC solenoid sensitive to instantaneous heating by pulsed linac beam ? (10 ps/20 ms)
- Which kind of SC wires to be used ?
 - NbTi, Nb₃Sn
 - high Tc material ? (Bi, YBCO)

SC solenoid beam irradiation test

- a sample SC solenoid is irradiated by shower from tungsuten radiator at KEKB linac test-beam line.
- quench limit property is studied.

SC solenoid beam test result

More detailed beam studies are necessary with more practical prototype solenoid and with more practical beam line configuration. They will be performed in 2010, 2011. 2nd beam test is planned in 2010 March.

Comparison of matching devices

(merits & demerits)

	air-core coil	flux concentrat.	SC solenoid
field strength	2.3 T	6 ~ 10 T	6 Т
field length	45 mm	90 mm	> 220 mm
field shape	difficult to make long slope	defined by conductor shape	flexible in design
aperture diameter	22 mm	<mark>8</mark> mm	> 30 mm
power supply	high-power pulse modulator	high power pulse modulator	low-power DC power supply
vibration	large	large	none
transvers field	small	large	small
target in mag. field	out of field peak	out of field peak	at field peak
component in vacuum	none	magnet & cooling	none
quenching	none	none	possible
top merit	working now	high field strength	adiabatic field
top demerit	low & short field	e+ bypass line	quenching

L-band capture section layout

L-band component R&D

f_{L-band} = 2856 [MHz] x (5/11) = 1298 [MHz]

klystron

- developping 40 MW klystron (30 MW in operation), 4.0 μs width
- 1st klystron will be completed in May 2010 and tested in a test-stand

• pulse modulator

 with suitable design of the klystron, S-band modulator can be used for L-band without modification

accelerating structure

- breakdown issue
 - ➤ spiralling field emission in solenoidal field
 - > shower particle bombardment
- travelling wave or standing wave structure ? shorter RF pulse width higher accelerating field
- 1st TW structure (2m long, 10 MV/m acc. field) will be completed in Feb. 2011 and tested in a test-stand

L-band teststand

- klystron + accel. structure high power test
- operation with DC solenoid field to study breakdowns by spiralling field-emission
- operation with target & matching device to study breakdowns by radiation from target

1st stage high power test will begin in Apr. 2011.

(3) Injector Upgade Schedule

Injector upgrade schedule

FY2009	FY2010	FY2011	FY2012	FY2013	FY2014
Main Ring	KEKB oper.		HER, LER upgrade		SuperKEKB commissioning
Damping		DR component			
Ring		DR tunnel construction		Install- ation	
			DR building construction		DR commissioning
Linac		Linac-DR connect	Linac-DR connect		
	e+ matching R&D	device	e+ matching device 8 section construc	k capture tion e+ be	am commissioning
	L-band R&D with prototypes at test-stand		L-band accl. mo constructior	dule	
RF	-gun & laser system design study	laser commissioning at test-stand	RF gun com- missioning		
		A1 gallery extension	at test-stand RFgun move to A1	e- beam com	missioning
AR injection with 3T	ction gun	ן PF	, AR injection with 3T gun		PF, AR injection with A1 gun