Control System

Current Status and Upgrade Plan

Feb. 16, 2010 Tatsuro NAKAMURA

Requirements for SuperKEKB

- Hearing from each hardware group
 - No much requirement is given
 - No drastic changes are required
 - Basically extension of the current system
- But...
 - Additional requirements sometimes come later. We need to prepare.
 - Replacements of the outdated components are necessary.

Structure of KEKB Control System (Current Status)

- EPICS based --- Distributed System
 - EPICS (Experimental Physics and Industrial Control System) is a toolkit to construct control systems
 - 2 layer model
 - OPI (Operation Interface) --- central servers
 - IOC (I/O Controller) --- frontend computers
 - CA (Channel Access)
 - Communication protocol over network
 - Key technology of EPICS

Version up of EPICS

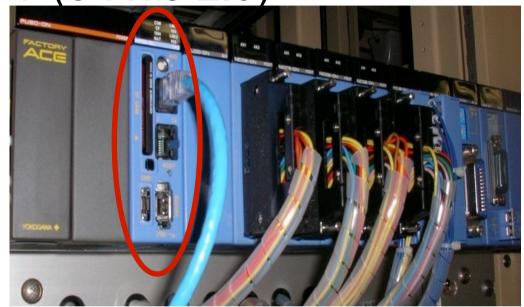
- Current version in KEKB
 - Most part: R3.13.1
 - New part: R3.14.9 (or R3.14.8)
- Major difference of the versions
 - R3.13: VxWorks only
 - R3.14: Multi-platform (VxWorks, Linux, Windows etc.)

Upgrade of IOC

- VME/VxWorks IOC
 - Mostly installed at the beginning of the KEKB
 - Force SYS68K CPU-40B/16 (68040) 6
 - Force SYS68K CPU-64D (68060)
 - Force PPC603 (PowerPC603)7
 - Force PPC750 (PowerPC750) 99
- Upgrade plan of the old CPU
 - CPU: Force PPC750 → MVME5500 (or MVME4100)
 - OS: VxWorks 5.3 → VxWorks 5.5
 - Evaluation of VxWorks 6.7 / 6.8
 - EPICS: R3.13 → R3.14

Upgrade of IOC --- Current Status

- One by one Replacement to MVME5500
- Examples (have done)
 - IOCBMD01B, IOCBMD02B (for BPM at IR)
 - → MVME5500 / VxWorks 5.5 / EPICS R3.14.9
 - IOCOPCCR (for bucket selection)
 - → MVME5500 / VxWorks 5.5 / EPICS R3.14.8.2
 - IOCTMCCCB (for Belle Status Signals)
 - → MVME5500 / VxWorks 5.5 / EPICS R3.14.8.2
 - IOCARVAW (for AR Vacuum)
 - → MVME5500 / VxWorks 5.5 / EPICS R3.14.9


New Type IOC

- EPICS can be embedded in various devices --- New trend of EPICS IOC
- F3RP61 --- EPICS embedded PLC
 - Yokogawa FAM3 series PLC
 - Linux is supported
 - EPICS R3.14
 - Real-Time Kernel (coming soon)
 - Applications in KEKB (Current Status)
 - Beam Mask Control
 - Pulsed Q-Magnet Control

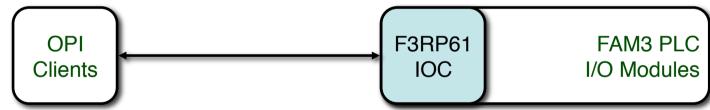
F3RP61 (e-RT3 2.0)

Linux 2.6.24
PPC 533MHz
128Mbyte RAM
100BaseTx x 2
USB
IEEE1394
Serial

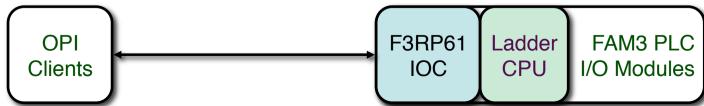
PCI

KEKB Beam mask controller

I/O Bus for FAM3 Module Interface
can access to mature FAM3 I/O Modules
Can be combined with conventional ladder CPU
Software development environment (ELDK)

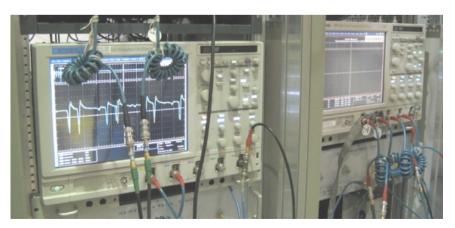


Simple PLC/F3RP61 Usage under EPICS


Conventional PLC usage with asynchronous access

OPI Clients IOC (Logics) Ladder CPU (Logics) I/O Modules

PLC usage with F3RP61 with only synchronous access and maybe with sequencer



If necessary, we can combine

New Type IOC

- EPICS Embedded Oscilloscope
 - Tektronix DPO7104
 - Windows embedded
 - EPICS R3.14.8.2
 - Applications in KEKB (Current Status)
 - Linac BPM
 - BT BPM

Upgrade of OPI, Networks

- OPI host computers (Central servers)
 - HP-UX servers → Linux servers
 - Linux Blade servers: easy to upgrade
 - Some software still depend on HP-UX server
- Replacement of Network switches (Currently partially installing)
 - Redundant configuration
 - VLAN
 - 10Gbase (future option)
 - Central core switch --- Catalyst 6509E
 - Some edge switches in local control room
 - Additional optical fibers

Replacement of Field buses

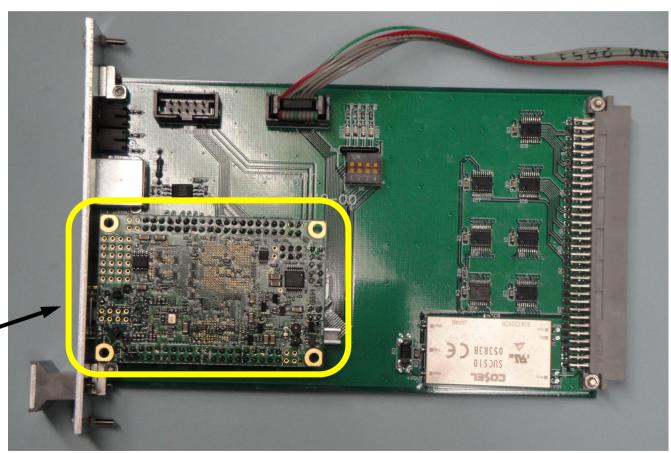
CAMAC

- At the beginning of KEKB, CAMAC system is good heritage from TRISTAN system.
- But, currently it become hard to maintain. (>20 years old system)
- Mainly used in RF control
- Partially used in Vacuum and BT control

CAMAC (continued)

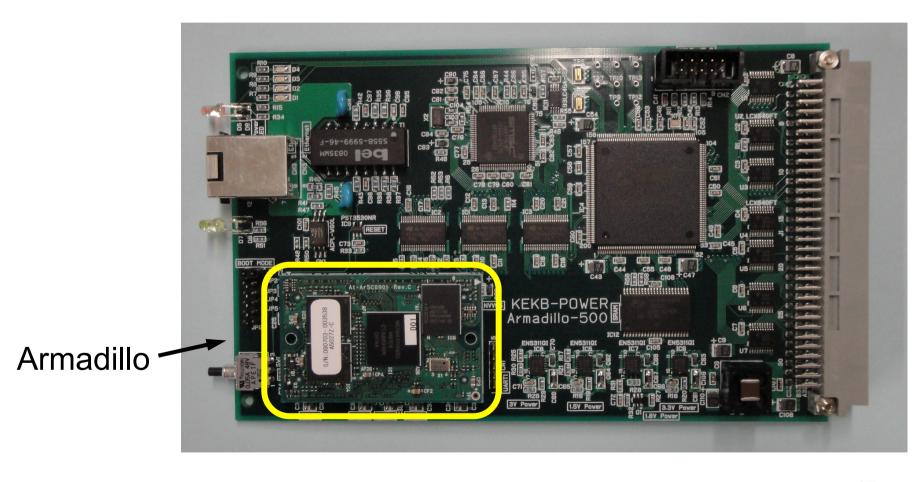
- Candidate of replacement
 - EPICS embedded PLC (F3RP61)
 - Handling of high density signal cables is a problem
- New LLRF system
 - Embedded EPICS on the new LLRF card (μTCA)

New interface for Magnet PS


- PSICM (Power Supply Interface Controller Module)
 - Interface card plugged in power supply
 - Microprocessor is embedded
 - ARCNET controller and driver
 - Timing signal input to start synchronous ramping
 - New version of PSICM (Design plan) --- "ePSICM"
 - Ethernet (100Mbps) instead of ARCNET
 - High level communication protocol (commands) is compatible
 - Fully compatible to the current version for the Magnet PS

New PSICM (continued)

- Current status --- developing prototype
 - Prototype using Suzaku
 - Suzaku: FPGA(Vertex-4) with CPU(PowerPC405)
 - Prototype using Armadillo
 - Armadillo: CPU(ARM11)
 - Rapid prototyping
 - Linux / EPICS embedded
 - EPICS CA as the low level communication protocol
 - Socket programming is not necessary.


Prototype of the ePSICM using Suzaku

Suzaku

Prototype of the ePSICM using Armadillo

Application programs

- EPICS Standard tools
 - Evaluation of CSS (Control System Studio)
- Scripting Languages
 - Python and SAD Script
- Electric Logbook system --- ZLog
 - Continue development
- Data Archiving system --- KEKBLog
 - Slow retrieval speed → semi-offline data structure conversion is planned.

Task Management

- Task of control group
 - Provide infrastructures and general tools.
- Task of hardware groups
 - Construct the device specific software using EPICS
- Link-person
 - Interface person from the hardware group,
 who communicates with the control group

Task Management (continued)

- At the construction phase of the KEKB, we had
 - Link-person meeting (regular meeting)
 - Training course of EPICS
- Again we need restarting the same procedure now.

Task Management (continued)

- Man power
 - Limited number of staffs in KEKB control group
 - Persons from companies
 - EPICS training is important.
- Collaboration to share experience
 - In KEK (PF, J-PARC control groups)
 - With companies (Mitsubishi, Yokogawa, etc.)
 - In Japan (RIKEN RI beam factory, etc.)
 - In Asia (China (IHEP, SINAP, Hefei), Korea (PAL, KSTAR), Taiwan (NSRRC), India (RRCAT), etc.)
 - World wide EPICS collaborations

Summary

- Control System for SuperKEKB is basically extension of the current system --- EPICS-based system.
- Replacements and/or Version up of the outdated components are necessary. Some of them have started.
 - EPICS R3.13 → R3.14
 - VME CPU
 - CAMAC
 - Server Computers, Network, Applications, ...
- New Type of IOC, interface modules, equipments have been developed.
 - F3RP61 --- EPICS embedded PLC
 - EPICS Embedded Oscilloscope
 - ePSICM --- Ethernet-based Power Supply Interface Controller Module
 - EPICS on μTCA card (New LLRF)
- Adequate task sharing between the Control Group and the Hardware Groups is important.
 - Link-person meeting & EPICS Training