

Vacuum System for KEKB Upgrade - mainly for arc section -

Y. Suetsugu on behalf of KEKB Vacuum Group

- Design strategy
 - Change to the nano-beam scheme
 - Design of main components
- Electron cloud issues in the positron ring
 - R&D of countermeasures
 - Mitigation strategy
- Summary and Remained issues

- Change to the nano-beam scheme from the highcurrent scheme;
 - Energy (LER: $3.5 \rightarrow 4$ GeV, HER: $8 \rightarrow 7$ GeV)
 - Emittance ($\epsilon_x 24 \rightarrow 3.3 \text{ nm}$ [LER])
 - Beam current (LER: $9.4 \rightarrow 3.6 \text{ A}$, HER : $4.1 \rightarrow 2.6 \text{ A}$)
 - Bending radius (LER $15.3 \rightarrow 71 \text{ m}$)
 - Bunch length $(3 \rightarrow \text{LER}: 6 \text{ mm}, \text{HER}: 5 \text{ mm})$
- Impact on the vacuum system_1
 - SR power for LER is reduced compared to the case in the previous high-current scheme.
 - Lower current, longer bending radius
 - \rightarrow Aluminum beam pipe is now available for LER.
 - \sim 3 W/mm² (ref: HER \sim 15 W/mm², if ha = 90 mm)
 - Cost reduction (?)
 - Gives more choices for the fabrication methods, and for the countermeasures against electron cloud issues.

- Impact on the vacuum system_2:
 - Photon density is reduced to one-half.
 - Lower beam current
 - HOM power is also reduced.
 - Longer bunch length, Lower beam current
 - Requirement to avoid beam instabilities is similar.
 - Fast Ion and Electron Cloud are still key issues.
 - Beam current may be increased in the future.
 - Leave room for higher beam currents

- The requirements to the vacuum system was actually relaxed, but still severer than that of KEKB.
- The design strategy fundamentally follows that considered so far for high-current scheme.
- Aluminum-alloy beam duct gives more choices in the design.

- Beam ducts are newly manufactured.
 - Magnets are re-aligned.
 - Beam impedances should be decreased further (pump ports, bellows, photon masks, etc.).
 - LER: More powerful countermeasures against the electron cloud are required.

Main vacuum components are also newly designed.

- Bellows chambers, gate valves, movable mask (collimators), stoppers, etc. are designed to fit the beam ducts.
- Higher strength against higher beam currents are required.

- Main pumps (NEG) are replaced with new ones.
 - Reset lifetime

- Auxiliary pumps (ion pumps), rough pumping system, vacuum gauges (CCG), L-angle valves, thermo sensors, etc. are reused, with some new backups.
 - Ion pumps were found to be fine after 10 years operation.
- Electric lines, cooling water pipes, control systems are basically reused as it is, after maintenance.
 Cooling water pipes should be rearranged.
- Capacity of water cooling system should be enhanced.

- Beam ducts with ante-chambers
 - A countermeasure against the electron cloud.
 - Low beam impedance
 - Pump ports and SR masks locate in an antechamber.
 - Reduction of SR power is not a main purpose now.
 - Fit to the existing (reused) magnets.
 - LER: Aluminum alloy is now available. Copper is required for wiggler sections.
 - **HER:** Copper is required.

Pump (NEG) is installed into one of the antechamber (inside of the ring) Concept

- chamber (inside of the ring)
 Distributed pump system for effective pumping. S ~ 80 l/s/m.
 - Inserted from end flanges.

NEG strip

R&Ds of beam ducts_1

- Copper beam ducts with antechambers have been installed into the LER, and tested with beams.
- Cold drawing method for copper pipe was established.

Straight duct

BPM

R&Ds of beam ducts_2

 Extrusion of aluminum-alloy beam duct is under going for LER.

Aluminum-alloy duct

Aluminum-alloy duct

- The design of HER beam duct has not yet fixed.
 - Fit to existing magnets.
 - If the half-aperture is ~90 mm the SR power is the same level as the present HER.
 →Negotiation with Mag. group

Example of cross section of HER beam duct

MO-type **Flanges**

- Thermally strong, sure RF bridge, applicable to antechamber scheme, low beam impedance
- In addition to SS flanges, copper alloy and aluminumalloy flanges has been developed.
 - Easy welding to pipes, reduction in heating by joule loss
- Several flanges have been installed into the ring and tested.

Cu-alloy flange (CrZrCu)

Al-alloy flange (A2219, A2024)

Bellows and gate valves with comb-type RF-shield

- Sure RF shielding, thermally strong
- applicable to ante-chamber scheme
- Finger-type for some cases, if flexibility is required.
- Trial models have been installed into the ring and tested.
 - Reduction in the temperature of bellows has been demonstrated.
- Copper RF shield will be used even for aluminum-alloy beam ducts.

Gate valve

Bellows chamber

RF-shield (gate valve)

Movable mask: Stealth type has been tested.

- Very sorry to say, but it met an severe obstacle.
 - Even a diamond support could not withstand the intense beam power, although the principle was demonstrated at low beam currents --- suspend the R&D.
- Modified present type (Ver.4) will be used in the commissioning stage at least.
 - Or advanced type of that used in the PEP-II ? (fit to the antechamber scheme?)
 - HOM absorbers will be reinforced.

PEPII type

Electron cloud instability can be a serious problem for LER (positron ring).

The threshold of electron density to excite the singlebunch instability:
K. Ohmi, KEK Preprint 2005-100 (2006)

$$\rho_{e,th} = \frac{2\gamma\nu_s\omega_{e,y}\sigma_z/c}{\sqrt{3}KQr_e\beta L}. \qquad \mbox{Here,} \qquad \omega_{e,y} = \sqrt{\frac{\lambda_+r_ec^2}{\sigma_y(\sigma_x\frac{1}{1}+\sigma_y)}}$$

E[GeV] = 4.0= 7828 Nh = 6.25E+10 γ = 0.0185 $Q_{b}[C]$ = 1.4E-08 (1.4 mA/bunch) Vs $S_{\rm b}$ [m] = 1.2 (4ns) σ_{7} [m] = 6.E-03 λ [C/m] = 5.2E+12 $(Q_b/2/\sigma_z)$ c [m/s] = 3.E+08 $\sigma_{\rm v}$ [m] = 2.E-05 = 11 σ_{x} [m] = 2.E-04 K Q = 7 r_e [m] = 2.80E-15 = 5.46E+11 $K = \omega_e \sigma_z/c$ Øε $\beta_{\rm v}$ [m] = 25 $\omega_{\rm e} \sigma_z/c = 10.9$ $Q = Min(Q_{nl}, \omega_e \sigma_z/c)$ *L* [m] = 3016 Q_{nl} ~7 $\rho_{th} [e^{-}/m^3] = 1.13E11 \rightarrow Target: 1E11$

Expected electron density without any cures

- Estimated from experiments so far at KEKB.

Sections	L [m]	L[%]	n _e [e ⁻ /m³]	n _e x L [%]	
Total	3016	100	Ave.5E12	100	
Drift space (arc)	1629 m	54	8E12	78]
Steering mag.	316 m	10	8E12	15	JMain part
Bending mag.	519 m	17	1E12	3.1	
Wiggler mag.	154 m	5	4E12	3.6	
Q & SX mag.	254 m	9	4E10	0.063	
RF section	124 m	4	1E11	0.072	
IR section	20 m	0.7	5E11	0.063	

Any countermeasures are required to reduce n_e down to 2%! (5E12 \rightarrow 1E11 [e⁻/m³])

Established counter measures

- Solenoid filed at drift section (~50 G): Effective to both photoelectrons and secondary electrons.
- Ante-chamber scheme : Effective to photoelectrons.
 Adopted at PEPII LER
- TiN coating (Reduction in SEY): Effective to secondary electrons. Adopted at PEPII LER

2010/2/16

- Comparison among these countermeasures
 - Standard = bare copper ducts (circular)

Materials, methods	Relative EC density	Notes
AI	~20	Coatings are indispensable.
Cu (Circular pipe)	1	
Solenoid [Drift space]	~1/50	~50 G, considering gaps (<1/1000 if uniform)
Ante-chamber scheme	~1/5	<1/100 for photoelectrons
Cu (AI)+TiN coating	~3/5	Relatively high gas desorption

- Any coatings (TiN, NEG, DLC, etc.) is effective independent of the underlying materials (Cu or AI). But the effect seems small for its work (time and labor).
- Note that aluminum beam duct requires any coatings to reduce SEY.

Application of these countermeasures

2010/2/16

- Countermeasures in bending and wiggler magnets
- Candidates:
 - Clearing electrode
 - Attract electrons by electro-static field
 - Grooved surface
 - Lower effective SEY geometrically
- Experimental R&Ds have been performed using KEKB LER
 - Also as a part of US-Japan collaboration for ILC DR

- **Clearing electrode** has been said to be very effective to reduce EC in magnetic field.
 - Impedance and heating of electrode have been serious problems for intense e⁺ beam.
- Very thin electrode structure was developed.
 - 0.2 mm AI_2O_3 and 0.1 mm tungsten (W) electrode formed by a thermal spray method. ± 1 kV is OK.
 - Good heat transfer and low beam impedance
 - Flat connection between feed-through and electrode

2010/2/16

A test chamber was installed in a wiggler magnet.

- Magnetic field: 0.78 T
- Effective length: 346 mm
- Aperture (height): 110 mm
- Photons: 1x10¹⁴ photons/s/m/mA

Test chamber in a wiggler magnet

- An electron monitor and an insertion with an electrode are placed at the center of a pole, face to face.
- Electron monitor has an RFA and 7 strips to measure spatial electron distribution (~40 mm width in total).

Results: Effect of electrode potential (V_{elec})

- Drastic decrease in the electron density by applying V_{elec} was observed. (For negative large V_{elec}, electrons flows into the monitor)
- Similar effect was observed for 2 ~ 16 ns spacings.

Results: Change with beam dose

 The electron density decreased to less than ~1/100 at V_{elec} > ~+300 V compared to the values at V_{elec} = 0 V (W) and a TiN-coated flat surface.

- Two-time experiments.
- Electron currents for the thermal-sprayed tungsten $(V_{elec} = 0V)$ is similar to the case of flat TiNcoated surface. \leftarrow Rough surface?
- The second result waslower than the first one.← Aging of surface?
- No extra heating of electrode and feedthrough was observed.

Application to a real beam pipe with antechambers. — Final check of feed through and heating of electrode.

 No extra-heating, degradation of insulation are found after one-month operation. (the experiment will be continued)

2010/2/16

Grooved surfaces: geometrically reduce SEY.

- The properties were studied in a wiggler magnet using the same experimental setup to that of the clearing electrode.
- B = 0.78 T
- Parameters of grooves
 - Material: Cu, Al-alloy, SS
 - β : 20~30°, R_t:0.1~0.2 mm
 - d: 2.5~5 mm

Results: EC growth

- A significant reduction in the electron density was observed by using grooved surfaces.
- Similar effect was observed for 2 ~ 16 ns spacings.

Results: Change with beam dose

- The electron density decreased to $1/6 \sim 1/10$ compared to the case of a flat TiN-coated surface ($\beta = 20$). That is, less than $\sim 1/10$ compared to flat copper.

Electron densities for grooves surfaces in these parameters were lower than the case of a flat TiN-coated surface. Smaller electrons even if no-coating: TiN coating improves the effect, but the groove structure seems much effective to reduce SEY. Less density for smaller β and R_t.

Comparison between clearing electrode and groove

- All data so far are plotted in one figure

Updated comparison among mitigation techniques

- Based on the experiments so far. Standard = Cu (circular pipe)

Materials, methods	Relative effect	Notes
AI	~20	Coatings are indispensable.
Cu (Circular pipe)	1	
Solenoid [Drift space]	~1/50	~50 G, considering gaps (<1/1000 if uniform)
Antechamber	~1/5	<1/100 for photoelectrons
Cu (AI) +TiN coating	~3/5	Relatively high gas desorption
Groove (β ~20°) [in B]	~1/10	Top and bottom
Electrode [in B]	~1/100	Most effective against EC. Expensive?

 Clearing electrodes and grooved surfaces can be strong countermeasures in dipole fields, more effective than any coatings.

Application of further countermeasures

Sections	n _e [e ⁻ /m³]	n _e xL [%]	
Total (3016 m)	9E10	100	
Drift space (1629)	3E10	18	
Steering mag. (316)	3E10	3.4	
Bending mag. (519)	2E11	38	🖒 Ante-cl
Wiggler mag. (154)	7E11	39	Ante-ch
Q & SX mag. (254)	8E9	0.81	

×1/10
 + Groove?
 Ante-chamber (Cu or Al+coating)
 Ante-chamber (Cu) + Electrode ×1/100

Sections	n _e [e ⁻ /m³]	n _e xL [%]
Total (3016 m)	3E10	100
Drift space (1629)	3E10	68
Steering mag. (316)	3E10	13
Bending mag. (519)	2E10	14
Wiggler mag. (154)	4E9	1.5
Q & SX mag. (254)	8E9	2.8

- Further low average n_e.
- If with TiN-coating, n_e ~ 2E10 e⁻/m³
- This is the result with the maximum possible cures at present.

2010/2/16

Expected reduction in the electron density

- Major electron cloud will be reduced by antechamber scheme and solenoid field at arc section.
- Electrodes in wiggler and grooves in bending magnets will decrease EC further and increase the safety margin.

Impact on the beam impedance

- The evaluation has just started (\rightarrow back up slides).
- Compared to the resistive wall (ϕ 90 mm, Cu)
- Clearing electrode, assuming;
 - One electrode, proportional to the length.
 - Resistive wall of W is included (over estimate).

Further investigation is required.

	1 m	Total (~80 m / 3000 m) [in wiggler magnets]
Loss factor	~x 2.1	~x 1.03
Wake potential (height)	~x 6 (5+1)	~x 1.11

- Grooved surface, assuming;

- Grooves at top and bottom, proportional to the length (over estimate).
- Increase in resistive wall of 50 % by grooved surface is included.

	1 m	Total (~520 m / 3000 m) [in Dipole magnets]
Loss factor	~x 1.3	~x 1.05
Wake potential (height)	~x 2 (1+1)	~x 1.17

Super KEKB is challenging for the vacuum system.

- The design will fundamentally follows that considered in the high-current scheme.
 - Basic R&D on components has almost finished.
 - Optimization of design should be required considering the cost.
 - Aluminum beam ducts can be used for LER now.
 - Radiation survey is undergoing using KEKB.
- For countermeasures against electron cloud in a dipole field, clearing electrodes and grooved surface are found to be very effective.
 - Ante-chamber and solenoid reduce main part of electrons.
 - By using clearing electrodes and grooved surface in dipole field, the average electron density further decrease.
 - Grooves were also effective in drift space (experiment of SLAC).
 - The affect on the beam impedance should be considered carefully.

Choice of material for LER beam ducts

- Should be considered together with countermeasures against EC, constructing scenario (schedule), cost, etc..
- Present plan: The Right Material in the Right Place

Drift space	Cu or AI+Coating (or Groove)
Q and Sx mag.	Cu or AI+Coating (or Groove)
B mag.	Al+Groove (with coating?) or Cu+Groove
Wiggler mag.	Cu+Electrode

Notes:

- Copper is a good material, i.e., low SEY (after scrubbing), good radiation shielding, low gas desorption, experiences in KEKB.
- (TiN) coatings have relatively high gas desorption. Wait scrubbing? They are effective, but the effect seems small for its labor. Coating can be done after the commissioning (?)
- Depends on the beam test in the next run.

R&D for aluminum beam duct with grooves is undergoing

- Welding groove blocks at top and bottom.

Extrusion: if possible, the manufacturing process becomes very simple.

- Beam test at a straight section (drift space) in the next run.
 - \rightarrow Grooves at whole surface

Design of HER beam ducts

- Fix the cross section.
- Components will be the same with those in LER.

Design of special component

Movable mask, Septum, Abort window, HOM absorber, etc.

Scheduling of manufacturing

- Manufacture ~2000 beam ducts (2 ~ 6 m) and install them in 3 years?!
 - Make 4 ducts per day! (200 days per year)
 - Install 8 ducts per day!
- Discover and nurture new vendors.
- Establish detailed procedures of preparation (baking, any coating, solenoid winding,,,).
- Make consistent schedule with magnet installation,,,.

Schedule of SuperKEKB Main Ring

END

Back up

- Dependence of loss factor and wake potential on the thickness of Al₂O₃ insulator
 - Calculated by using GdfidL (1m model, half chamber)
 - t0.2 mm ~ 2.0 mm

- Effect of tilt on loss factor
 - Calculated by GdfidL (0.5 m model, half chamber)
 - Comparison with resistive wall impedance
 - Up to 20 mrad

- Loss factor is smaller (~1/2) compared to that of the resistive wall (for 1 m).
- Loss factor is almost constant against the tilt angle.

- Effect of tilt on loss factor
 - Calculated by GdfidL (0.5 m model, half chamber)
 - Comparison with resistive wall impedance
 - Up to 20 mrad

- Loss factor is almost constant against the tilt angle.
 - Kick factor increases with the tilt angle.

- Effect of length on loss factor
 - Calculated by GdfidL (half chamber)
 - Comparison with resistive wall impedance
 - Up to 3m.

 Loss factor is almost constant against the length.

- Wake potential
 - Calculated by GdfidL (0.5 m model, half chamber)
 - Comparison with resistive wall

- The wake potential is inductive.
- The peak value of the wake potential is higher by a factor of 5~10, though the loss factor is small.
- Should be carful in using the electrode for long section, in relation to single bunch instability

2010/2/16

Impedance of groove_1

- Effect of tilt on loss factor
 - Calculated by GdfidL
 (0.5 m model, half chamber)
 - Comparison with resistive wall impedance
 - Up to 20 mrad

Kick factor

- The grooves are located at both up and bottom.
- The loss factor is very small for tilt angle = 0 ~ 20mrad. (~10 % of resistive wall)
- The loss factor is almost constant against tilt (a little bit increases).

2010/2/16

Impedance of groove 2

Effect of tilt on loss factor Calculated by GdfidL (0.5 m model, half chamber) - Comparison with resistive wall impedance - Up to 20 mrad D Loss factor and kick factor -8x10⁷ 5x10⁸ R = 45 mm pipe, D = 40 mm (Flat) Width = 32 mm, Length = 500 mm -6x10⁷ 4x10⁸ b = 20, d = 5 mm σ_ = 6 mm 3x10⁸ -4x10⁷ angle. k_z [V/C] 2/V] Kick factor \rightarrow 2x10⁸ -2x10 b =30, d=5 mm Ο 1x10⁸ Ō ←Loss factor b =20, d=3 mm 2x10⁷ 0 20 25 5 10 15 0 Tilt [mrad] 2010/2/16 **KEKB Review (KEK)**

- Loss factor is almost constant against the tilt
 - Kick factor increases with the tilt angle. Larger than that in the case of electrode.

Impedance of groove 3

- Effect of length on loss factor
 - Calculated by GdfidL (half chamber)
 - Comparison with resistive wall impedance

2010/2/16

Loss factor is almost constant against the length.

Impedance of groove_4

- Wake potential
 - Calculated by GdfidL (0.5 m model, half chamber)
 - Comparison with resistive wall

- Wake potential is inductive, and almost the same to that for resistive wall.
- Should be carful in using the electrode for long section, in relation to single bunch instability.

