Accelerating Cavities for the Damping Ring (DR)

Tetsuo ABE For KEKB-RF/ARES Cavity Group

(T. Abe, T. Kageyama, H. Sakai, Y. Takeuchi, and K. Yoshino)

The 16th KEKB Accelerator Review Meeting February 8, 2011

Old RF Model

shown in the 15th KEKB Accelerator Review Meeting, February 16 (2010)

 $R/Q = 150 \Omega$

 $Q_0 = 29000 \text{ (IACS 90\%)}$

 $V_c = 0.5 \, MV$

(Normal View)

Loss Factor: 1.9 [V/pC]

(Transparent View)

(Changes after Feb. 2010)

[Basic Conditions]

- A) Frequency: 508.887MHz (= the freq. of the MR)
- B) Based on KEKB-MR/ARES, but without S-cav and C-cav
- C) Connection to \$\phi40\$ beam ducts (→taper near the cavity)
- D) Max. Total V_c : 0.5 \rightarrow 2MV
 - Against microwave instabilities from CSR effects
 - Should be higher enough than the current design value: 1.4MV

[Main Topics]

- 1. 3 Cavities (max) with 0.7MV/cav in the RF section (~5m-long)
- 2. SiC tiles for all the HOM dampers
- 3. Grooved Beam Pipe (GBP) made common between the neighboring cavities
- 4. Connection between the cavity and GBP
- 5. HOM Impedances for CBIs
- 6. RF-absorption power in each HOM damper
- 7. Coupled oscillations of the accelerating mode

Specification of the Vc and Wall Loss of the DR Cavity

Based on the results of the HPT of the ARES Prototype performed in the KEK/AR Tunnel (1997)

	Vc [MV/cav]	Wall Loss Power [kW]	Wall Temperature (calc.) [degC]
KEKB Design	0.50	60	50
Max. Continuous	0.70	133	74
Max. Instantaneous	0.82	193	94

(Appendix A)

(From T. Kageyama's presentation @DR mtg)

Note: The DR cavity has been designed with the same basic structure as the ARES/A-Cav on the basis of its successful experiences.

(Appendix B)

New RF Model

ver.2011-02-08

- √ 3 cavities with 0.7MV/cav
- ✓ GBP common between the neighboring cavities
- ✓ HOM dampers with SiC tiles
- ✓ SiC tiles on the duct work similarly to SiC ducts.
- ✓ Loss Factor : 2.5 [V/pC]

Pumping Ports

Two Types of Components

- 1. Cavity
- 2. Grooved Beam Pipe (GBP) with SiC tiles

Connection between the Cavity and GBP

HOM Absorbers

The basic HOM damped structure is the same as that of the KEKB-MR/ARES cavity, but the HOM absorbers are all SiC tiles: t20mm x 48 mm x 48mm.

Longitudinal Impedance of the RF section: and CBI

Estimated from Finite-Difference Time-Domain parallel computations of GdfidL with the PC cluster (256 cores & 512GB memory)

CBI threshold for Total Vc: 1.4MV

Growth Time > 20ms

> 5ms (rad. damping time)

Transverse Impedances of the RF section: and CBI

Estimated from Finite-Difference Time-Domain parallel computations of GdfidL with the PC cluster (256 cores & 512GB memory)

CBI threshold for Total Vc: 1.4MV

(Tuner Position: 30mm inside)

Growth Time > 30ms

> 10ms (rad. damping time)

Power of RF Absorption in Each Set of SiC Tiles

HOM Power from the Long-Range Wakefield

Estimated from the time-domain computation of GdfidL (smax=1000m)

with the conditions:

- Bunch charge: 8nC

- Bunch length: 6mm

- Beam offset: 2mm (X,Y)

Scalar sum over four bunches

<< (Power Capability: 1kW/set)

Heating Value by the ACC Mode for SiC Tiles

Eigenmode Analysis

- Using CST-MWS
- •With 40 MeshLines/WaveLength

Tail of the Electric Field of the ACC mode (magnification)

(6 SiC tiles are approximated by one plate.)

Electric Field of the ACC mode

Heating Value by the ACC Mode

For the mechanically innermost position

$$rac{P_{loss}^{(All-SiC)}}{P_{loss}^{(Wall)}} = 0.1\%$$
 $P_{loss}^{(Wall)} = 133 \mathrm{kW}$ for 0.7MV/cav

$$P_{loss}^{(All-SiC)} = 133 \text{ W}$$

Heating value < 100W/set << Power Capability: 1kW/set

Coupled Oscillations of the ACC Mode

Step 1: Two-Cavity System

"Electric Short" or "Magnetic Short"

Two-Cavity System

$$<<\frac{f_{acc}}{Q_0} \approx \frac{509 \text{MHz}}{30000} \approx 20 \text{kHz}$$

Step 2: Periodic Structure

One Unit

Periodic Structure

$$<<\frac{f_{acc}}{Q_0} \approx \frac{509\text{MHz}}{30000} \approx 20\text{kHz}$$

The Coupled Oscillations of the ACC Mode are negligible.

Schedule

JFY	Cavity No. to be made	Remarks
2011	0 (prototype)	HPT to be done by May 2012; Could be a spare.
2012	1	Feedback from the HPT of the Cavity No.0
2013	2	Get ready for the commissioning with the two cavities.
201X	3	If needed

Summary

- The design of the accelerating structure for the DR has been modified for the total Vc: 2MV(max).
 - ➤ Based on the KEKB-MR/ARES
 - ➤ Three cavities with 0.7MV/cav
 - > GBP made common between the neighboring cavities
- SiC tiles are used for all the HOM dampers.
 - ➤ Based on the established technology used for KEKB-MR/ARES
 - > (RF absorption power)/set < 180W << PowerCapability: 1kW/set
- **■** CBIs driven by the HOM impedances
 - \triangleright Longitudinal Growth Time > 20 ms > 5 ms (rad. damping time)
 - \triangleright Transverse Growth Time > 30 ms > 10 ms (rad. damping time)
- **■** Coupled Oscillations of the ACC-mode: negligible
 - > OK

Appendix A

Assumptions for estimating wall temperatures of the DR cavity

- Cooling-water flow: 200 L/min
- Cooling-water temperature: 30 degC
- Cooling-water velocity: 2.0 m/s
- Hydraulic equivalent diameter of the cooling-water channel: 9.1e-3 m
- Reynolds number: 2.2e4 (turbulence)
- Heat-transfer coefficient from the channel to the water: 8.9e3 W/m^2/K
- Thermal conductivity of copper: 4.0e2 W/m/K

Appendix B

Accelerator Resonantly-coupled with Energy Storage

3-cavity system stabilized with the $\pi/2$ -mode operation

Backup Slides

Horizontally-Polarized Dipole Mode in the Cavity Couples to the TE mode in the GBP.

ACC-Mode Frequency with or without the **Input Coupler**

Shift=10mm & LoopAngle=79.5deg

2. Upgrade of the HOM Damper

Grooved Beam Pipe with <u>SiC Tiles</u> Installed

Absorbs Horizontally-Polarized Dipole Mode (TM11)

Cutoff Freq. of TE₁₁ in a Regular φ150 Duct

SiC *Indirectly* water-cooled

2. Upgrade of the HOM Damper

More Power Capability

Grooved Beam Pipe with SiC Tiles Installed > Winged Chamber Loaded with SiC Bullets

 $P_{HOM}^{Capability(1.3\text{GHz})} \approx 1 \,\text{kW}$

SiC Indirectly water-cooled

