Design of Damping Ring

Kikuchi, M., MAC2011, 7 Feb '11

Requirements on emittance and intensity

a. Injection aperture of LER

 $2J=0.7\,\mu\mathrm{m}$ (0.5 $\mu\mathrm{m}$, MACIO)

• Emittance of Injected beam

 $\epsilon_i \leq 14.5\,\mathrm{nm}$ (4 nm, MAC10)

b. Lifetime of LER

- $\tau \simeq 600 \, {\rm sec}$
- Intensity of Injected beam

 $q \simeq 8 \,\mathrm{nC/pulse} = 4 \,\mathrm{nC/bunch}$

This corresponds to 30 % injection efficiency

$$I = I/\tau = 3.6 \text{ A}/600 \text{ sec} = 6 \text{ mA/sec}$$

 $\dot{Q} = \dot{I}/f_{rev} = 60 \text{ nC/sec} = 2.4 \text{ nC}@25 \text{ Hz}$

Layout of the System

- Positron target at sector I-4
 Capture + acceleration with L-band+S-band structure
 Extract from Linac at I. GeV
- After 2 linac-pulse, re-inject to the Linac
 LTR line with ECS incorporated
 RTL line with BCS incorporated

- Note the campus boundary is near to the DR

Optics

Concept

- •Large dynamic aperture
- •Shorter damping time with lower bend field

FODO with Reverse Bend

$$\tau = \frac{3T_0}{r_e \gamma^3 J_x I_2} = \frac{3}{2\pi c r_e J_x} \frac{\rho}{\gamma^3} C \frac{1-r}{1+|r|}$$
$$= \frac{3}{2\pi c r_e J_x} \frac{\rho}{\gamma^3} \left(2\pi \rho + \frac{1-r}{1+|r|} L_1 \right)$$

- r: Bend ratio = B1/B2(Normal FODO $\longrightarrow r = -1$)
- L_1 : Total length except bend length

L₁ is effectively reduced by a factor of (1-r)/(1+|r|) = 0.48 $r = 0.35, \rho = 2.7 \text{ m}, L_1 = 100 \text{ m}$ $2\pi\rho = 17 \text{ m}$

• Shorter damping time with lower bend field

$$B = 1.35 \text{ T}$$

Ring Parameters

Parameters of the Damping Ring					
Energy	1.1	GeV	1.0		
No. of bunch trains/ bunches per train	2 / 2				
Circumference	135.5	m			
Maximum stored current*	70.8	mA			
Energy loss per turn	0.091	MV			
Horizontal damping time	10.9	ms	12.7		
Injected-beam emittance	1700	nm	2100		
Equilibrium emittance(h/v)	41.4 / 2.07	nm	4 / .4		
Coupling	5	%	10		
Emittance at extraction(h/v)	42.5 / 3.15	nm	17.6 / 5		
Energy band-width of injected beam	± 1.5	%			
Energy spread	0.055	%			
Bunch length	6.5	mm	5.4		
Momentum compaction factor	0.0141		0.0019		
Number of normal cells	32				
Cavity voltage for 1.5 % bucket-height	1.4	MV	0.26		
RF frequency	509	MHz			
Inner diameter of chamber	32	mm			
Bore diameter of magnets	44	mm			

5.I

- 8 nC/bunch (16 nC/pulse) is the ultimate goal
- The hardware design is based on this value.

2011年2月7日月曜日

* 8 nC/bunch

Dynamic aperture

Injected beam: $\epsilon = 1.5\,\mu{\rm m},\,3.5\,\sigma$ $|\Delta p/p| = 1.5\,\%$

'Normal' errors

Strength: 0.1 % for quads, 0.2 % for sexts
Rotation: 0.3 mrad for quads and sexts

- •Misalignment: 0.15 mm
- •BPM offset: 0.15 mm

•Orbit correction

PLUS

Higher order multipoles (Systematic, $\Delta B/B$ at r=17 mm)

Bend: K2 0.15 %, K4 0.05 %
Quad: K5 0.15 %, K9 0.05 %
Sext: K8 1.0 %, K14 0.1 %

(Except quads in straight)

•Bends and quads are in fabrication based on these numbers

Electron Cloud Instability

• Theory

$$\rho_{e,th} = \frac{2\ln 2\pi}{3\sqrt{2}} \frac{\gamma \nu_s \,\omega_e \sigma_z/c}{KQ \, r_e \beta L} (1 + \frac{\sigma_y}{\sigma_x})$$
$$\omega_e^2 = \lambda_+ r_e c^2 / \sigma_y (\sigma_x + \sigma_y)$$
$$Q = \min(5, \omega_e \sigma_z/c) \quad K = 3$$

• Correction factor due to discrepancy between the theory and the simulation: 0.43 (simulation gives smaller threshold)

 $(\rho_e L)_{\rm th} = 7.0 \times 10^{14} \, {\rm m}^{-2}$

• Simulation results of photo-electron formation

Cloud donaity:

		Drift	Bend	Q + SX	unit
Length		73.2	36	26.8	m
δ_{MAX} =2	SR=1	1.3	0.6	0.5	10 ¹² m ⁻³
δ_{MAX} =1	SR=1	0.4	0.5	0.15	10 ¹² m ⁻³
	SR=0.1	0.15	0.11	0.03	10 ¹² m ⁻³

- •SR is photon-flux ratio to the design flux:
- •SR=0.1 mimics the antechamber effect
- •Electron Cloud is not in proportional to the flux
- •δmax=1 expected for TiN coated AI chamber

Electron Cloud Instability 2

• Integrated electron density for $\delta max=1$, SR=1

 $0.51 \times 10^{14} \,\mathrm{m}^{-2} \ll \rho_{e,th} L = 7.0 \times 10^{14} \,\mathrm{m}^{-2}$

- •Electron density is well below the threshold
- •Electron cloud in reality may be larger than 2D simulation.
- •Some mitigation technique will be incorporated in the vacuum design for insurance
- •(Antechamber is needed for the impedance-free photon mask)

Chamber (basic plan)

•Al alloy

•Antechamber with cooling-water channels

•Grooved surface on top and bottom of the bend chamber

2011年2月7日月曜日

Acceptance of antechamber for the photons

- Vertical axis: Ratio of photons that hit surface of the main chamber
- Neglect photons E < 5 eV
- Distance from source point is 1 m
- Antechamber height of 8 mm is sufficient to accept 90 % of photons in the antechamber if the store time is longer than 10 ms.

Transverse impedance

• Calculation results of the kick factor

	2010.04.1					
Component	No.		kick_x	N*kick_x	kick_y	N*kick_y
ARES	1		1.74E+13	1.74E+13	-1.70E+13	-1.70E+13
Bellows	88	Х	2.93E+11	2.57E+13	-1.56E+08	
		Y	-1.51E+08		2.84E+11	2.50E+13
flange gap	176	Х	4.73E+11	8.32E+13	1.06E+07	
		Y	-4.93E+07		5.06E+10	8.91E+12
Pumping port	176	Х	1.98E+08	3.48E+10	-1.13E+08	1.99E+10
SR mask	176	XY	2.20E+06	3.87E+08	-2.63E+05	4.63+07
Resistive wall	135.5	XY	-3.6E+12	4.88E+14	-3.6E+12	4.88E+14
BPM	82	Х	0.571	46.82	0.483	39.606
Stripline kicker	1	Х	33.7	33.7		
			V/Cm	6.14×10 ¹⁴	V/Cm	5.39×10 ¹⁴

• Transverse microwave instability

$$I_{th} = \frac{8f_s E/e}{\sum \beta_i k_i} = 0.41 \text{ A}; \text{ for x } \longrightarrow 183 \text{ nC/bunch}$$
$$0.31 \text{ A}; \text{ for y } \longrightarrow 141 \text{ nC/bunch}$$

Longitudinal impedance

Vacuum chamber component

• CSR wake is 100 times larger than the ordinal vacuum-components wake!

- CSR wake of proposed chambers
 - Numerical Calculation Oide's code ullet
 - Model : ante-chamber (single bend :ver2002)+ infinite straight pipe •
 - summation over $32 \times B1 + 38 \times B2 + 6 \times B3 + 2 \times B4$
 - $-\sigma z = 0.5mm$

• Multi-particle longitudinal tracking using the CSR wake

- Seems OK for the intensity (2.5e10) but not for 'ultimate goal(5e10)'
- The "24h" type is preferable. Physical aperture is OK for "24h".
- But the simple summation of single-bend wake is questionable because the bend length is short.

- CSR wake of proposed chambers
 - calculation over entire ring $32 \times B1 + 38 \times B2 + 6 \times B3 + 2 \times B4$

• Many spikes due to interference of EM waves of consecutive bends

• Check the convergence of wake calculation as a function of mesh size

- Still not converged in mesh size (8,8)
- Finer mesh is difficult due to computing power limitation

• Comparison with a normal round chamber

• Lowest synchronous mode of a toroidal waveguide with a round cross section (ref. I)

$$k_1 = 2.12 \ \rho^{1/2} a^{-3/2} = 1.57 \times 10^3 \,\mathrm{m}^{-1} \longrightarrow 2\pi/k_1 = 4.0 \,\mathrm{mm}$$

• For the round pipe, the wake function looks like a single resonator wake, whose wave number corresponds to a single toroidal mode. It is a surprise because the geometry is far from a toroid.

- For the antechamber, some other frequencies are mixed.
- •This suggests that the real wake might be composed of several single mode wakes.

ref 1: G.V. Stupakov and I.A. Kotelnikov, PRST-AB 6(2003) 034401

CSR 6: Theoretical estimation of the threshold (1)

S-H theory on CSR instability

[1] G. Stupakov, S. Heifets, Beam instability and microbunching due to coherent synchrotron radiation, PRST-AB, 5(2002), 054402

I-D Vlasov equation for coasting beam

$$\frac{\partial \rho}{\partial s} - \eta \delta \frac{\partial \rho}{\partial z} - \frac{r_0}{\gamma} \frac{\partial \rho}{\partial \delta} \int_{-\infty}^{\infty} dz' \, d\delta' \, W(z - z') \rho(\delta', z', s) = 0, \quad (1)$$

- $W(z) = \frac{2}{(3R^2)^{1/3}} \frac{\partial}{\partial z} z^{-1/3}$ for z > 0, • Use CSR wake for free space (2)
- Beam is unstable if (k: perturbation wave number)

$$kR < 2.0\Lambda^{3/2}$$
 $\Lambda = \frac{n_b r_0}{|\alpha| \gamma \sigma_{\delta}^2} \frac{R}{\langle R \rangle}$ R: Bending radius n_b: local density

• For bunched beam

 $N_{th} = \frac{\pi^{1/6}}{\sqrt{2}} \frac{\gamma L}{r_0 R^{1/3}} |\alpha| \sigma_\delta^2 \sigma_z \frac{1}{\lambda^{2/3}}$

L: Circumference

(Lattice parameters were optimized from those of MACI0 to maximize the threshold).

CSR 7: Theoretical estimation of the threshold (2)

• Validity condition of the theory

I. Bunch is longer than perturbation wave length: $k \sigma_z \gg 1$ or $\lambda < \sigma_z$

2. S

3. V

4. [

5. S

All these conditions are satisfied in the next examples, but no4 is marginal.

Shield effect is small: (h is chamber height)

$$R/h \le \Lambda$$
 (79 < 117)
Wake formation time is shorter than instability frequency: $\frac{Nr_0}{\sqrt{2\pi}\gamma\sigma_\delta\sigma_z} \ll 1$ (0.007)
Dilution due to transverse beam size is negligible: $\frac{\sigma_x L}{\sigma_z \nu_\beta R} \ll 1$ (0.29)
Shield effect by chamber: $\lambda < 2\sqrt{h^3/R}$

$$\lambda < 2\sqrt{h^3/R}$$

• Estimated threshold

Parameters			SKB-DR	UVSOR-II	NSLS VUV
Energy	E	GeV	1.1	0.6	0.737
Circumference	L	m	135.5	53.2	51.0
Bend radius	R	m	2.7	2.2	1.91
Momentum compaction	α		0.0141	0.028	0.0235
Bunch length	σz	mm	6.5	75*	50
Energy spread	σ_{δ}		5.5E-04	3.4E-04	4.6E-04
Chamber height	h	mm	34	38	40
Design intensity	N	10 ¹⁰	5.0		
Threshold (S-H[I])	Nth	10^{10}	2.44	7.63	8.75
Observed threshold	Nth	10^{10}		8.9	10.6
Λ			117	91	78
R/h			79	58	48
$Nr_0/(\sqrt{2\pi}\gamma\sigma_\delta\sigma_z)$			0.0073	0.0033	0.0036
$\sigma_x L/(\sigma_z \nu_\beta R)$			0.29		

*) Measured bunch length just before the onset of bursting phenomenon.

CSR 9: Theoretical estimation of the threshold (2)

Linearized Vlasov(LV) solution on microwave instability with CSR wake

[1] K.L.F. Bane, Y. Cai, G. Stupakov, Comparison of simulation codes for microwave instability in bunched beams, IPAC'10 Proceedings, 2096

- Use of Vlasov-Fokker-Planck code and LV code for the bunched beam
- CSR wake for the parallel plates
- Beam dynamics depends on the two parameters

Figure 2: For the CSR wake, threshold value of S_{csr} vs. shielding parameter, $\Pi = \rho^{1/2} \sigma_{z0} / h^{3/2}$. Symbols give results of the VFP solver (blue) and the LV code (red).

'Intensity':
$$S = \frac{r_e N_b \, \rho^{1/3}}{2 \pi \nu_s \gamma \, \sigma_{\delta 0} \, \sigma_{z0}^{4/3}}$$

'Shielding':
$$\Pi = \sigma_{z0} \, \rho^{1/2} / \, h^{3/2}$$

Threshold

 $S_{th} = 0.5 + 0.12 \,\Pi$

For SKB-DR

$$\Pi = 4.85$$

 $N_b = 6.4 \times 10^{10}$

- Lattice parameters were optimized from the last MAC to suppress the microwave instability due to CSR.
- Electron cloud density is lower than the threshold.
- Chamber design employing antechamber has been proposed.
- Threshold of the transverse microwave instability is much higher than the design current.
- Longitudinal wake is dominated by CSR wake.
- Calculation of CSR wake for entire ring is important.
- Poor convergence in mesh size yet.
- CSR calculation is presently in chaos.
- Prediction by theories scatters from 4 nC/bunch (S-H) to 10 nC/ bunch (KB).
- Fabrication of chambers is scheduled in the FY 2012.

Schedules

Spares

$$F = \frac{L\gamma}{\rho^{1/3}} \alpha \sigma_{\delta}^2 \sigma_z \tag{1}$$

$$\sigma_{\delta}^2 = C_q \frac{\gamma^2}{J_{\epsilon}\rho} \tag{2}$$

$$\sigma_z = \frac{c\alpha}{\omega_s} \sigma_\delta \tag{3}$$

$$\omega_s^2 = \frac{\alpha h \omega_0^2 e V \cos \phi_0}{2\pi E} \simeq \frac{\omega_{RF} e V}{m_0 c^2} \frac{c\alpha}{\gamma L}$$
(4)

$$\sigma_z = \left(\frac{m_0 c^2}{e V \omega_{RF}}\right)^{1/2} (c \alpha \gamma L)^{1/2} \sigma_\delta \tag{5}$$

Putting (2)-(5) into (1) one gets the expression of F as

$$F = \left(\frac{C_q}{J_{\epsilon}}\right)^{3/2} \left(\frac{m_0 c^3}{eV \omega_{RF}}\right)^{1/2} \frac{(\alpha L)^{3/2}}{\rho^{11/6}} \gamma^{9/2}$$
(6)

Requirements from machine parameters

B field

$$B\rho = p/e \qquad \rho = 1.703 \times 10^{-3} \frac{\gamma}{B} = c1 \frac{\gamma}{B}$$
(7)

Synchrotron tune

$$\nu_s^2 = \frac{\omega_{RF} eV}{2\pi m_0 c^2} \frac{1}{2\pi c} \frac{\alpha L}{\gamma} \ge \nu_{s0}^2 \qquad \nu_{s0} = 0.008$$
(8)

Damping time

$$\frac{1}{\tau} = \frac{r_e \gamma^3}{3T_0} J_x I_2 = \frac{2\pi c r_e J_x}{3} \frac{\gamma^3}{\rho L} \frac{1+r}{1-r} \ge \frac{1}{\tau_0} \qquad \qquad \tau_0 = 12 \text{ ms}$$
(9)

Bucket height

$$\left(\frac{\Delta E}{E}\right)^2 = \frac{U_0}{\pi \alpha h E} F\left(\frac{eV}{U_0}\right) \simeq \frac{2eV}{\pi \alpha h E} = \frac{4ceV}{m_0 c^2 \omega_{RF}} \frac{1}{\alpha \gamma L} \ge \left(\frac{\Delta E}{E}\right)_0^2 \qquad \left(\frac{\Delta E}{E}\right)_0 = 0.015 \quad (10)$$

• Comparison with a normal round chamber

- Reflections from side wall of antechamber contributes to spikes
- Shallow antechamber may be a better solution?

Beam line is occupied with magnets

Instability 5

- $ho_e \le 3 \times 10^{11} \text{ m}^{-3}$ or $ho_e L \le 0.4 \times 10^{14} \text{ m}^{-2}$
- Mitigation is necessary to reduce SEY much less than 1.2
- TiN coating
- Groove (Vacuum people favors)

SEY (measured at KEKB)

Y. Suetsugu et al., NIM A 556 (2006)

Impedance Budget

