

SuperKEKB Design Overview

16th KEKB Accelerator Review Feb. 7, 2011

Haruyo Koiso

KEKB History

HER (8->7GeV e-) + LER (3.5->4GeV e+) + J-Linac

e⁺e⁻ Colliders

Design Concept of SuperKEKB

- Increase the luminosity by 40 times based on "Nano-Beam" scheme, which was first proposed for SuperB by P. Raimondi.
 - Vertical β function at IP: 5.9 \rightarrow 0.27/0.30 mm (× 20)
 - Beam current: $1.7/1.4 \rightarrow 3.6/2.6 \text{ A}$ (× 2)
 - Beam-beam parameter: $.09 \rightarrow .09$ (× 1)

$$L = \frac{\gamma_{\pm}}{2er_e} \left(1 + \frac{\sigma_y^*}{\sigma_x^*} \right) \frac{I_{\pm}\xi_{\pm y}}{\beta_y^*} \left(\frac{R_L}{R_y} \right) = 8 \times 10^{35} \text{ cm}^{-2} \text{s}^{-1}$$

• Beam energy: $3.5/8.0 \rightarrow 4.0/7.0 \text{ GeV}$

LER : Longer Touschek lifetime and mitigation of emittance growth due to the intra-beam scattering HER : Lower emittance and lower SR power

Collision Scheme

Design Concept of SuperKEKB

- Use the KEKB tunnel.
 - We have no option for polarization at present.
- Use the components of KEKB as much as possible.
 - Preserve the present cells in HER.
 - Major change since the 15th KEKB Review.
 - Replace dipole magnets keeping other main magnets in LER arcs.

Comparison of Parameters

	KEKB Design	KEKB Achieved : with crab	SuperKEKB Nano-Beam
Energy (GeV) (LER/HER)	3.5/8.0	3.5/8.0	4.0/7.0
β _y * (mm)	10/10	5.9/5.9	0.27/0.30
β_x^* (mm)	330/330	1200/1200	32/25
ε _x (nm)	18/18	18/24	3.2/5.3
$\epsilon_{y}^{}/\epsilon_{x}^{}$ (%)	1	0.85/0.64	0.27/0.24
σ _v (μm)	1.9	0.94	0.048/0.062
ξγ	0.052	0.129/0.090	0.09/0.081
σ_{z} (mm)	4	6 - 7	6/5
I _{beam} (A)	2.6/1.1	1.64/1.19	3.6/2.6
N _{bunches}	5000	1584	2500
Luminosity (10 ³⁴ cm ⁻² s ⁻¹)	1	2.11	80

Y. Ohnishi et al.

Lattice

• Low beta

	LER	HER	
$\beta_{\rm X}^{*}$	32	25	mm
β_y^*	0.27	0.30	mm

• Low emittance

	LER	HER	
ε _x	3.2	4.3*- 5.3	nm
ε _y	< 8.64 (0.27%)	< 10.32 (0.24 %)	pm

* : with full wigglers

- Ensure a sufficient dynamic aperture for
 - Touschek lifetime > 600 sec
 - Injection acceptance: $A_x 707_{(LER)} / 377_{(HER)} nm$

Main Items to Upgrade

- Rebuild the IR and Tsukuba straight section
- Improve optics in the arcs and wiggler sections
- Change the beam pipes
- Strengthen and reconfigure the RF system
- Upgrade Linac, including the construction of a positron damping ring, strengthening the positron source, and installation of a low-emittance gun for electrons
- Implement speed and resolution improvements to the beam diagnostics and control system
- Strengthen the cooling facilities

Interaction Region

IR with local chromaticity correction

lerfqlc_Oide_1168.sad

2.5π cell structure

KEKB LER

•Large dynamic aperture.

•Large tuning range of the horizontal emittance and the momentum compaction factor. •Chromaticity correction with noninterleaved pairs of sextupoles which are connected with a -I' transformer.

•Major non linearity is cancelled within each pair.

•52-54 pairs / ring.

KEKB LER dynamic aperture

HER arc

HER emittance can be decreased to ~5 nm preserving the KEKB cell structure

Oho Straight Section

- Decrease the horizontal emittance with wigglers.
- Reuse LER wiggler magnets. (60%)
- Install more wigglers if possible. (+40%)

A. Morita, Y. Ohnishi, et al

.

LER arc

Replace ~100 dipole magnets in the arc sections to longer dipoles

Dynamic Aperture

- Dynamic apertures of both rings are limited by nonlinear leakage fields of IR magnets for counter-rotating beams. More serious in LER.
- Physical apertures need sufficient clearances.

Leakage fields from QC1LP, QC1RP, & QC2RP

• Optimization of magnetic fields and physical apertures is being in progress.

Dynamic Aperture

LER

Max injection rate : LER: 4 nC/bunch, 2 bunches/pulse, 25 Hz HER: 5 nC/bunch, 2 bunches/pulse, 25 Hz

Lower limit of lifetime: LER >181 sec, HER > 105 sec

K. Oide, Y. Ohnishi, A. Morita

Tunability of Parameters

	SuperKEKB	Case I	Case II
Energy (GeV) (LER/HER)	4.0/7.0	4.0/7.0	4.0/7.0
β_y^* (mm)	0.27/0.30	0.27/0.347	0.26/0.30
β_{x}^{*} (mm)	32/25	32/25	40/25
ε _x (nm)	3.2/5.3	3.2/ <mark>4.6</mark>	3.2/ <mark>4.3</mark>
$\epsilon_{y}^{}/\epsilon_{x}^{}$ (%)	0.27/0.24	0.28/0.25	0.48/0.41
σ _y (μm)	0.048/0.062	0.049/0.063	0.063/0.073
ξ _y	0.09/0.081	0.087/0.09	0.09/.078
σ_{z} (mm)	6/5	6/5	6/5
I _{beam} (A)	3.6/2.6	3.6/2.6	3.6/2.6
N _{bunches}	2500	2500	2000
Luminosity (10 ³⁴ cm ⁻² s ⁻¹)	80	80	80

Machine parameters are tunable to some extent.

Machine Parameters

2010/Sept/8	LER	HER	HER	HER	unit
wiggler	Full	None	6/10	Full	
E	4.000	7.007	7.007	7.007	GeV
I	3.6	2.6	2.6	2.6	А
Number of bunches	2,500	2,500	2,500	2,500	
Bunch Current	1.44	1.04	1.04	1.04	mA
Circumference	3,016.3700	3,016.3700	3,016.3704	3,016.3707	m
ε _x /ε _y	3.2(1.9)/(2.8)	5.3(5.2)/(4.2)	4.6(4.5)/(3.6)	4.3(4.1)/(3.2)	nm/pm
β_x^*/β_y^*	32/0.27	25/0.30	25/0.30	25/0.30	mm
α _p	3.49x10 ⁻⁴	4.55x10 ⁻⁴	4.55x10 ⁻⁴	4.54x10 ⁻⁴	
σ_{δ}	8.00(7.66)x10 ⁻⁴	5.85(5.78)x10 ⁻⁴	6.35(6.29)x10 ⁻⁴	6.59(6.54)x10 ⁻⁴	
Vc	9.4	12.4	14.7	15.8	MV
σz	6.0(5.0)	5.0(4.9)	5(4.9)	5(4.9)	mm
Vs	-0.0256	-0.0254	-0.0277	-0.0287	
v_x/v_y	44.53/43.57	45.53/43.57	45.53/43.57	45.53/43.57	
Uo	1.87	2.07	2.43	2.67	MeV
$\tau_{x,y}/\tau_s$	43.0/21.5	68.2/34.1	58.0/29.0	52.8/26.4	msec
	lerfqlc1351	herfqlc5210	herfqlc5214	herfqlc5215	

Values in () : without the effect of intra-beam scattering

New Ante-chamber beam pipe

TiN-coated beam pipes with ante-chambers to suppress – Heating of components : HOM and SR – Electron cloud instability

Beam

Positron Damping Ring

The injected beam should have very low emittance because of poor dynamic aperture of the main rings

-> Kikuchi

Beam energy (GeV)	1.1		
Circumference (m)	135		
# of train	2		
# of bunches/train	2		
Maximum stored current (mA)	70.8		
Horizontal damping time (ms)	11		
Injected-beam emittance (µm)	1.7		
Emittance @ extraction (H/V) (nm)	42.5 / 2.07		
Cavity voltage (Vc) (MV)	0.5	1.0	1.4
Bunch length (mm)	11.1	7.7	6.5
Momentum compaction (α)	0.0141		
Energy spread (%)	0.055		

Electron cloud will be mitigated by TiN coating and solenoid windings. Founded for some components such as magnets.

SuperKEKB luminosity projection

Y. Ohnishi

backup

LER wiggler section

Total effective length: 120.8 m (Total pole length: 84 m)

Crab waist scheme

Crab waist sextupoles have decreased the dynamic aperture in both transverse and momentum directions.

Crab waist scheme

Nano-beam Scheme (15-th KEKB Review)

• The scheme proposed by P. Raimondi and SuperB Group.

- Squeeze β_v^* as small as possible: 0.27/0.41 mm.
- Assume beam-beam parameter = 0.09 which has been already achieved at KEKB.
- Change beam energies 3.5 / 8 -> 4 /7 GeV to achieve longer Touschek lifetime and mitigate the effect of intra-beam scattering in LER.