Background Estimation

H.Nakayama (Belle-II) SuperKEKB international review 2011.02.08

Index

- Introduction
- Background estimation
 - 1. Touschek/gas scattering
 - 2. Synchrotron radiation
 - 3. GEANT4-based simulation framework

Introduction

- At SuperKEKB with 40 times higher luminosity of KEKB, detector background will also increase drastically.
 - Nano-beam(0.94um→0.048/0.062nm), higher current(x~2),
 smaller radius of inner-most detector (r_{min}=18mm→14mm)
- To protect detector from background, we carefully design
 - collimators in arc sections
 - IR beam pipe optimized to stop SR light
 - heavy-metal shield on IR beam pipe to stop showers
 - Polyethylene shield to stop neutrons
 - etc...

Background sources at SuperKEKB

1. Touschek effect

- − Intra-bunch scattering, Rate ∞ (beam size)⁻¹, ∞ E⁻³ → mainly LER
- Dominant background at SuperKEKB (nano-beam)
- Scattered beam particles hit beam pipe \rightarrow create shower \rightarrow reach detector
- Countermeasures:
- Horizontal collimator on both (inner/outer) side to stop off-momentum e+/e-
- Heavy-metal on IR beam pipe to protect inner detector from shower

2. Beam-gas scattering

- Scattering by remaining gas, Rate \propto IxP
- Vacuum level at SuperKEKB will be similar to KEKB except for IP region.
- Particles scattered in IP region will be lost at downstream, therefore will not be detector background

Background sources at SuperKEKB (cntd.)

3. Synchrotron radiation

- Rate $\propto E^2B^2$: mainly from HER
- Photons are emitted on final focusing magnet
 →hit IP beam pipe (Be) and penetrate → reach PXD
- Countermeasures:
 - collimate beam pipe radius just before IP
 - "ridge (saw-tooth)" on beam-pipe inner wall to prevent reflected photons to hit Be pipe

4. QED process

- Physics process, Rate∝Luminosity
 - Rad. Bhabha: Gammas emitted in forward direction
 → hit magnet iron → create neutron: to be simulated
 - 2-photon: e+e- pair will hit PXD: confirmed OK

5. Beam-beam interaction

- Scattered at IP, by field of the other beam
- To be simulated

Background tasks

• <u>Simulation</u>

- Prepare background flux (generate scattering, propagate to IR)
- Implement IR geometries into GEANT4 models
 - Beam-pipe, QC1/2 magnet, cryostat, non-uniform magnetic field, etc.
- Full-detector GEANT4 simulation
- KEKB data analysis
 - Compare with KEKB simulation, validation of simulation scheme
 - Extrapolation toward SuperKEKB
- Feedback to structural design
 - Shape of beam-pipe, heavy-metal shield on beam-pipe
 - Collimator
 - Cooling system of IP beam pipe
 - etc...

1. Touschek/Beam-gas

Extrapolation of KEKB data
 KEKB: simulation validity check with data
 SuperKEKB: Flux simulation
 SuperKEKB: GEANT4 simulation

1-1. Extrapolation from KEKB data

- KEKB machine study (Jun. 2010)
 - Single beam (no collision), measure detector background
 - Separate Touschek and beam-gas, using beam-size dependence

•
$$k_{beam-gas}$$
, $\tau_{beam-gas}$, k_{Tou} , τ_{Tou} are measured

$$BG = -I(k_{Beam-gas} * \frac{1}{\tau_{Beam-gas}} + k_{Tou} * \frac{1}{\tau_{Tou}} + \dots)$$
 I:beam current, τ :beam life time k :proportional constant

"k_{Tou}, k_{beam-gas} are the probability of scattered particle to reach detector and becomes background. It should depend on collimator settings, heavy metal shield amount, and detector performance.

- Extrapolation strategy for SuperKEKB:
 - The KEK value is assumed for $\textbf{k}_{\text{beam-gas}}$, \textbf{k}_{Tou} , and $\tau_{\text{beam-gas}}$.
 - For τ_{Tou} , SuperKEKB design Value (10min) is used.
 - Other background (SR,QED,beam-beam,..) are not considered.

How to measure τ_{Touschek}, τ_{beam-gas}

How to measure k_{Touschek}, k_{beam-gas}

Extrapolated background at SuperKEKB

	Extrapolated BG (Belle-II+SuperKEKB)
ECL	~9 GeV/event, OK (introduce 5us time window)
ТОР	~2.9MHz (=~3MHZ) TOF rate eqiv., ☺ (replaced from current TOF)
CDC	~84kHz/wire (<200kHz/wire), OK (larger radius, more cell number)
SVD	~1.2% occupancy (<10%), OK (shorter integration time)
PXD	~2.0% occupancy (>1%), ☺ (not including low pt particle & few keV gamma)

Note that only Touschek and beam-gas BG are considered. Other BGs are not included (SR, QED, beam-beam, etc...). 11

Nakano(Tohoku)

1-2. Simulation vs. Data (KEKB)

Nakano, B2GM7 parallel

Layer 1	1 Occupancy		2 Dose [krad/yr]	
	Simulation	Data	Simulation	Data
LER				
Touschek	0.47%	0.47±0.07%	32	
Gas	2.24%±0.16%	0.19±0.07%	40	
HER	Could be x1/10			
Touschek	$0.09\% \pm 0.001\%$	$0.006 \pm 0.002\%$	9	
Gas	1.4%±0.1%	$0.49 \pm 0.003\%$	31	
HER+LER	4.2%±0.2% 1	.2±0.1%	112±2	100~200

Assumption for simulation:

- 1nTorr CO (0.1~1nTorr?)
- Uniform Touschek in the ring
- 10⁷ seconds/year (dose)

• etc..

TURTLE+GEANT simulation is consistent with experimental data.

1-3. SuperKEKB simulation

- LER Lattice: ler1354f.sad
- Scattering probability depends on:
 - Scattering position: $\propto \sigma_x(s_0)^{-1}\sigma_y(s_0)^{-1}$
 - |dE/E|: 14~100sigma(1.1 % ~ 8 %)
- I=3.6A, Touschek life=600sec
 - Total loss: -6mA/sec, 240W, 380GHz e+
 (cf KEKB: 1.7A, life=7000sec, Total loss=8W, 12GHz e+)
- Collimator setting (preliminary)
 - 4 collimators in arc section
 - s=-2060m, -1300m, -550m, -200m
 - horizontal: both side (inner/outer) (KEKB: inner only)
 - +-13.6mm from beam center
 (we can further close collimators to ~12mm without losing Touschek lifetime)
- Beam-pipe aperture in IR (preliminary)
 - Updated after this simulation

Loss distribution (ring)

Collimators stop ~76% of Touschek loss. Outer collimator seems effective. ~16% reaches to IR region(|s|<6m).

More loss at masks can be achieved by narrowing collimators(\rightarrow +-~12mm), without losing Touschek life time.

Loss distribution (IR)

Main source of Touschek background is loss at QC2(s=-6~-10m), 60mW.

Scattered position of IR loss

Beam-pipe physical aperture

Touschek: KEKB vs. SuperKEKB

ler1354f.sad

	KEKB(LER)	SuperKEKB(LER)	$I=eNf_0$ $f_0=v_{e+}/3000m = 10^5[Hz]$	
Beam energy	3.5 GeV	4.0 GeV	$R = I/(ef_0)/\tau [Hz]$ $W = RE = IE/(ef_0)/\tau [W]$	
Beam current	1.7A	3.6A		
Touschek lifetime	~7000 sec	600 sec		
Loss rate(Total)	8W, 12GHz e+	240W, 380GHz e+		
	x30: almost	fixed	 Need narrower collimators 	
IR/Total	0.7%	16%	(13.6mm → ~12mm)	
	x20: to be imp	roved	 Need additional collimator 	
Loss rate(IR)	60mW, 0.1GHz e+	40W, 60GHz e+	at s=~-150m or closer to IP	
			• Loss position should be	
IR loss position	s=-6m~10m	s= -1.6m-4m	moved to upstream for shielding showers	

Toy GEANT simulation

- 4GeV positron
- Beam pipe material: Cu, Ta
- Beam pipe shape: simple tube
- Incident angle: θ =1,2,4,6,10,20 mrad

2. Synchrotron Radiation

✓ Flux simulation
□ GEANT4 simulation

Latest beam pipe design

Proposed at last B2GM, by K. Kanazawa

- Collimation part of incoming pipe stops most of SR.
- The minimum distance of the duct wall from the beam stay clear is 2 mm.
- HOM can escape through the pipes for the outgoing beam.
- "Ridge" structure on inner surface of collimation part to hide IP from reflected SR.

HER(5252a)

Synchrotron radiation

Gives requirements for fabrication accuracy and alignment

GEANT4 toy study

Simple beam-pipe model

E (keV)	Survive rate
1	<1x10^-6
5	<1x10^-6
10	<1x10^-6
20	~3x10-6
30	~30x10^-6

Quick GEANT4 study

• 5 degree(worst case), 1-30keV photon

 After passing through the beam-pipe, 3x10⁽⁻⁶⁾ will survive for 20keV and less for lower energy

PXD requirement:<1% occupancy ⇔ <6.4 hits/bunch on PXD

- SR hits on beam pipe: $O(10^3)$ /bunch $\rightarrow <<1$ hits/bunch on PXD $\rightarrow OK!$
- Back-scattering effect (for high energy SR) should be checked with realistic beam pipe geometry.
- SR depends on leak field distribution.
- Reflection/tip-scattering at "ridge" structure on collimation part is not easy to simulate
 - \rightarrow Beam-test is planned.

3.GEANT4 simulation

Clement(Tokyo)

IR beam pipe in GEANT4

Beam-pipe, heavy-metal shield is implemented.

QC1/2 magnets, cryostat, non-uniform magnetic field will be implemented soon.

Further IR geometry

Provided by Masuzawa

Implementation will be step-by step, from IP to far from IP+-10m

geant4 sim w/ basf2

Det. part	Geom.	Digitization
IR	pipe + shield	_
PXD	sensors	first version
SVD	sensors	first ersion
CDC	wires + others	hits
TOP	quartz + PMT	optics treat
ECL	scintilator	will start
A-RICH	aerogel+HAPD	optics treat
EKLM	sensor + iron	debug
BKLM	not yet	not yet
Structure	solenoid+yoke	

IR: more precise geom. up to +-10m? QCS magnets (now:+-50cm) non-uniform B-field

all available sub-detectors are included

in the first release of the Belle II library (on Feb. 8th)

geant4 sim w/ basf2

Summary

<u>Touschek</u>

- Extrapolation of KEKB data toward SuperKEKB is performed.
 - Expected background meets requirement for SVD,CDC,TOP,ECL.
- Simulation validity is confirmed.
 - KEKB simulation results are consistent with KEKB data.
- Preliminary SuperKEKB simulation is performed.
 - ~40W loss in IR region (cf.60mW@KEKB), but we have a room to improve: ex. narrower/additional collimators, wider IR beam-pipe aperture

Synchrotron radiation

- Collimation part on incoming beam-pipe stops most of SR.
- Simple simulation shows expected PXD occupancy meets requirement.
- Back-scattering effect for high energy SR, tip-scattering on collimation part should be checked. Leak field dependency should be also checked.

GEANT4 simulation

- Full detector simulator is released recently.
- IR magnets, cryostat geometry is missing: should be implemented a.s.a.p.

backup

Final focusing magnets

Latest beam-pipe design

Heavy-metal shield (SuperKEKB)

Heavy-metal shield(KEKB)

Lead shield in QCS cryostat (KEKB)

QCS-L cryostat

Neutron shield (KEKB)

Concrete wall

Polyethylene shield

SuperB estimations

Touschek Paoloni, XIV SuperB Meeting @ INFN-LNF τ_{TOU} = 356 s (5.9 min) IR losses = 8.6 MHz |s|≤2 nt =1-5 (open jaws) -0.02LER Final Focus Right -0.04 -150 x 10³ 0 -100 -50 50 10/03/10 12.02.05 Win32 version 8.51/15 0.60 40. $\beta^{W2}(m^{W2})$ B.1/2 B. 1/2 D (m) D. D 0.55 (zH 5000 4000 3000 ALLCHAN 0.3771E+08 35. 0.50 30. 0.45 0.40 25. 0.35 2000 20. 0.30 1000 0.25 15. -150 -100 -50 0.20 0 50 s(m) 10. 0.15 0.10 Ê 0.04 5. 0.05 × 0.02 0.0 0.0 0 40. 80. 0.0 20. 60. 100. 120. -0.02 COL2 COL3 49.231 67.766 s (m) CdL1 COL4 -0.04 21:351 49.231 85.837 -100 -50 -150 0 50 (ZH)s 6000 ALLCHAN 0.1450E+05 IR losses = 14.5 kHz/bunch nt =1-5 (jaws closed) <u>5</u> 4000 2000 -150 50 s(m) -100 -50 0

Touschek is not a big problem for SuperB. Large dispersion at some position → movable mask is effective there SR

Paoloni, XIV SuperB Meeting @ INFN-LNF

41

Paoloni, XIV SuperB Meeting @ INFN-LNF

[†]Other background sources

	Cross section	Evt/bunch xing	Rate @ 10 ³⁶ Hz/cm ²	Generators
"Radiative" Bhabha e⁺e⁻ to e⁺e⁻γ	~340 mbarn (Εγ/E _{beam} > 1%)	~850	0.3THz	BBBrem
e ⁺ e⁻ pair production	~7.3 mbarn	~18	7GHz	Diag36
e ⁺ e ⁻ pair (seen by L0 @ 1.5 cm)	~0.3 mbarn	~0.8	0.3GHz	
Elastic Bhabha	O(10 ⁻⁴) mbarn (Det. acceptance)	~250/Million	100KHz	BHwide
Υ(4S)	O(10 ⁻⁶) mbarn	~2.5/Million	l KHz	
	Loss rate	Loss/bunch pass	Rate	
Touschek (LER)	4.1kHz / bunch (+/- 2 m from IP)	~3/100	~5 MHz	Star (Manuela Boscolo's code)

2 photon process

Cross sections for t-channel processes are largely independent of s

Which is correct?

Machine study might give answer

Luminosity correction by CDC BG

SVD hits

2nd - 4th SVD layer, hits corrected - all exp.

ete

QED summary

- We have excluded SuperB value with machine study.
- Another analysis using reconstructed tracks are

• We will start GEANT4 simulation soon.