

Vacuum System for SuperKEKB (mainly for LER arc section)

Y. Suetsugu on behalf of KEKB Vacuum Group

- Design
 - Upgrade strategy
 - Design of key components
 - Beam pipes
 - Movable masks (collimators)
 - Countermeasures against EC
- Present status and plans
 - Manufacturing of components
 - Plans
- Summary

Goal of vacuum-system upgrade is to realize;

Ultra-high vacuum

- Pressure on the order of 10⁻⁷ Pa with beam
- Maintain small emittance, Reduce background noise to detector, Avoid ion instability [HER]

Beam pipes (components) with low beam impedance

 Maintain small beam emittance and short bunch length, Avoid single and multi-bunch instabilities

Stable and robust system

- Against high beam current (SR, HOM)
- Design based on established techniques, but introducing advanced idea at the same time.

High cost efficiency

- Make use of the change to the nano-beam scheme
- Continuous use of vacuum systems and reuse components in KEKB as much as possible.

In concrete terms;

- Infrastructures, such as electric lines, cooling water pipes, control systems are basically reused as it is, after maintenance.
 - Cooling water pipes should be rearranged. Especially for Wiggler section.
 - Capacity of water cooling system should be enhanced.
 - Radiation shielding scenario should be reconsidered around collimators (Beam loss: ~20 times of KEKB).

Pumping and monitoring system

- Pumps: NEG as main pump, and Ion pump as auxiliary pump:
 Oil free and capture pumping system
 - Ion pumps are reused, and NEG is replaced with new one.
 - Disconnected to atmosphere during beam operation.
- **Rough pumping:** Turbo molecular pump and drag pump
 - Oil free, Rough pumping system are reused.
- Vacuum gauges (CCG), L-angle valves, thermo sensors, etc. are reused, with some new backups.

Beam pipes

- New beam pipe: Beam pipes with antechambers.
 - Low beam impedance, Higher strength against intense SR
 - Less photoelectron effect to position beam [LER] : Electron-cloud formation is suppressed.
- Add more powerful countermeasures against electron cloud (EC) effects [LER].
 - Solenoid field, Rough surface at side wall, TiN coating
 - New technique: Clearing electrode, Grooved surface

Main components

- Bellows chambers, gate valves, movable masks

(collimators), stoppers, etc. are designed to fit the beam pipes.

Higher strength against higher beam currents

Main upgrade is the replacement of beam pipes and other main vacuum components.

Key components presented here:

Beam pipes

- Beam pipes with antechambers
- Aluminum-alloy beam pipe for LER
- Countermeasures against electron cloud effects
- Pumps
 - NEG strips
- Connection flange
 - MO-type flange (Al and Cu)
- Bellows and Gate valves
 - Comb-type RF shield
- Movable mask (collimator)
 - Conceptual designing has just started.

- **Beam pipes:** Beam pipes with antechambers
 - Small effect of photoelectrons, low beam impedance, low SR power density
 - The cross section should fit to the existing magnets.
 - Aluminum alloy is available for LER arc section (see next). Copper is required for wiggler section (and HER).
 - Available by cold-drawing technique (copper) or extrusion technique (aluminum)
 - Copper beam pipes have been tested in KEKB.

Concept

Aluminum-alloy beam pipe for LER

- In the nano-beam scheme,
 - Max. SR power density ~ 3 W/mm² (ref: HER ~15 W/mm²) owing to long curvature of bend
 - \rightarrow Aluminum alloy is available.
- Merit (compared to copper):
 - Cost reduction
 - Easy manufacturing (TIG welding is available.)
 - Easy handling (light)

Aluminum beam pipe with antechambers (extrusion)

- Aluminum-alloy beam pipe for LER
 - Problems to be considered (compared to copper case):
 - Relatively high gas desorption and high secondary electron yield
 With TiN coating in any way to suppress electron cloud effect
 - High resistive wall impedance
 - \rightarrow Not so serious owing to a large aperture
 - Vibration of beam pipe → Eddy current in Q → Beam oscillation
 → A problem in Spring-8. Rigid fixing of beam pipe was effective.
 - Radiation issues: (T. Sanami, KEK)
 - Leakage of SR ($\varepsilon_r = 1.8 \text{ keV}$):
 - Dose < 1 MGy for 10 years :OK
 - Checked experimentally in KEKB.
 - Shielding of loss particle
 - No big difference between Al and Cu in a simulation.

Al-alloy beam pipe is adopted for LER beam pipe

Main Pump (NEG)

- Arc: Available in one of antechambers (inside of the ring)
 - Make the most of distributed pumping system: effective pumping.
 - Effective pumping speed of ~ 80 l/s/m.
- Straight: Lumped pump ports at both antechambers.
- Ion pumps: Placed every 10 m
 - Helpful at higher pressure

KEKB Review 2011 @KEK

- Flange : MO-type Flanges
 - Thermally strong, sure RF bridge, applicable to antechamber scheme, low beam impedance
 - In addition to stain-less flanges, copper alloy and aluminumalloy flanges had been developed.
 - Easy welding to pipes, reduction in heating by wall loss
 - Several copper flanges have been installed into the ring and tested.

- Bellows and gate valves with comb-type RF-shield
 - Sure RF shielding, thermally strong
 - Applicable to antechamber scheme
 - Finger-type for some cases, if flexibility is required.
- Trial models has been installed into the KEKB ring and tested with beam.
 - Fitting to beam pipe with antechambers
 - Reduction in the temperature of bellows has been demonstrated.

 Countermeasures against electron cloud (EC) effect [LER]

- Serious issues for recent positron and proton storage rings.

Sections	L [m]	L[%]	Countermeasure	Material
Total	3016	100		
Drift space (arc)	1629 m	54	TiN coating + Solenoid	AI (arc)
Steering mag.	316 m	10	TiN coating + Solenoid	AI
Bending mag.	519 m	17	TiN coating + Grooved surface	AI
Wiggler mag.	154 m	5	Clearing Electrode New	Cu
Q & SX mag.	254 m	9	TiN coating	AI (arc)
RF section	124 m	4	(TiN coating +) Solenoid	Cu
IR section	20 m	0.7	(TiN coating +) Solenoid	Cu or ?

- By using these countermeasures, the average electron density on the order of 10¹⁰ e⁻/m³ will be obtained.
 - Threshold of head-tail instability: ~1.6×10¹¹ e⁻/m³

Some new techniques for EC mitigation

Clearing electrode for wiggler section.

- Attract electrons by electrostatic field
- Very thin electrode has been developed
 - 0.1 mm tungsten on 0.2 mm AI_2O_3
 - Small impedance and effective heat transfer
- Have been tested in KEKBdeveloped
 - Expected reduction ratio: 1/100
- Also demonstrated in CesrTA
- Manufacturing has already started.

Beam pipe with clearing electrode

KEKB Review 2011 @KEK

- Grooved surface for bending magnets section
 - Reduce effective SEY structurally
 - Have been tested in KEKB, and also in CesrTA
 - Extrusion test of aluminum beam pipe was successful.
 - With TiN coating

Aluminum beam pipe with grooves

Valley :R0.1~0.12 Top :R0.15 Angle:18~18.3°

2011/2/8

KEKB Review 2011 @KEK

1000 BRODERIA

- Movable mask (collimator)
 - Indispensable in order to reduce background noise of BELL-II
 - Long R&D history in KEKB
 - Stealth type was proposed, but not yet realized.
 - For SKEKB,
 - High thermal strength against wall heating (~ 1 mm from beam for vertical type)
 - Low beam impedance (ex. Against TMC instability)
 - Fitting to antechamber scheme
 - Robust against impact of beam in case
 - Placed at both sides of the ring
 - HOM absorbers (near to masks)
 - Concept of Ver.4 in KEKB will be available, at least in the beginning stage: how to fit to antechamber scheme?

One candidate: PEP-II type

2011/2/8

Movable masks for KEKB (Ver.4) and PEP-II

"NO structural problem in this design. Intense excited HOM have heated up bellows chambers and NEG elements near the masks." (from M. Sullivan [SLAC])

2011/2/8

KEKB Review 2011 @KEK

- Loss factors (k)
 - Calculated by GdfidL, 3D model
 - Dependence on bunch lengths (σ_z)

- Smaller than that for present Ver.4 (KEKB): owing to long ramp?
- Small dependence on d
- No big difference between single- and pair-type versions: Pairtype is smaller?

2011/2/8

20

Threshold current for TMC (LER)

- Transverse mode coupling instability (TMC)
- Threshold formula (from B. Zotter, Handbook of Accelerators)

$$I_{thresh} = \frac{C_1 f_s E / e}{\sum_i \beta_i k_{\perp i}(\sigma_z)}$$
 [A/bunch]

where

 $C_1 \sim 8$ i $\beta \sim 20 \text{ m (in Arc)}, \sim 1 \text{ m (in Local Correction)}$ $f_s = 2.13 \times 10^3 \text{ Hz}$ $k_{\perp} (\sigma_z) = (\text{kick factor, V/C/m})$ $E/e = 4 \times 10^9 \text{ eV}$ $\Sigma = (\text{total number})$

- Design bunch current = 1.44 mA/bunch
- For **1** mask (**2** heads)

 $d = 5 \text{ mm [H, Arc]: } k_y = 8 \times 10^{13} \text{ V/C/m} \rightarrow I_{th} = 43 \text{ mA/bunch}$ $d = 1 \text{ mm [V, Arc]: } k_y = 1 \times 10^{15} \text{ V/C/m} \rightarrow I_{th} = 3.4 \text{ mA/bunch}$ $d = 1 \text{ mm [V, LC]: } k_y = 1 \times 10^{15} \text{ V/C/m} \rightarrow I_{th} = 68 \text{ mA/bunch}$ (With non-linear collimation scheme)

4 horizontal at arc masks will be available. 1 vertical masks at LC will be OK.

Wall loss

- For a beam pipe with a radius of a [m], a bunch with a length of σ_{z} [m], the wall loss per meter is (from A. Piwinski, Handbook of Accelerators)

$$P' = \frac{\Gamma(3/4)I_b^2 C}{4\pi^2 a \sigma_z^{3/2} \sqrt{2\mu\sigma_c/Z_0}}$$

 I_b =Bunch current C=Circumference(=3000m) Z_0 =Vacuum impedance(= 377\Omega) σ_c =Conductivity (1/ Ω) μ = 1, Γ (3/4) = 1.225

- If graphite (σ_c =2×10⁵ 1/Ωm) is used, *P*'=2.55 W/m. For 2500 bunches, *P*'= 32 kW/m. If ½ of total current concentrated in 1 mm width, *P* = 50 W/mm² (32 × π/2).

 \rightarrow Very hard to deal

- If tungsten (σ_c =2×10⁷ 1/ Ω m) instead, **P** = 5 W/mm²
 - \rightarrow Well manageable with water cooling.

How about damage? Easy replaceable?

For movable mask;

- The design has just started.
 - Start with a conventional idea

To be investigated are;

- Bench marking of simulation code.
 - Results of GdfidL seem to Strongly depends on mesh sizes.
- Evaluation of influence on beam dynamics
 - TMC, Banana effect, etc.
- Choice of head material
 - Good electrical conductivity, High thermal strength, Easy bonding
 - Candidates: Mo, Ta, W, Re, Rh, Ru,,,
 - Simulation of heating by EGS4 has also started. (by T. Sanami)
- Possibility of increasing beam size
 - Non linear optics (under investigation by Y.Ohnishi)
- If novel ideas are required;
 - Spoiler using channeling in a crystal (Si)
 - Collimator using Laser, Electron beam,,,,

Long term has restarted again.....

2011/2/8

Present status and plans_1

- R&Ds of components have almost finished.
 - Conceptual design of movable masks has just begun.

Manufacturing of some beam pipes had started.

- Beam pipes with clearing electrode and Q beam pipe for LER wiggler section is under manufacturing (~220 m).
 - Copper beam pipes
 - will be delivered this fiscal year.
 - Together with some bellows chambers (16 pieces)
- Beam pipes and bellows chambers for LER arc sections and straight sections will be ordered soon.
 - LER arc : Beam pipes for drift [S], beam pipes for bend [B], beam pipes for quad (with BPM) [Q]: ~1860 m (Al alloy)
 - LER straight: Chicane section and downstream of wiggler section and wiggler beam pipes: ~135 m (Cu)
 - Bellows chambers: 450 pieces (AI)

Present status and plans_3

Varieties of beam pipes for arc section

B beam pipe

Q beam pipe

S beam pipe

名前	長さ [mm]	本数[本]	図番号
DBA1635aP	1635	2	1
DBA2147aP	2147	2	2
DBA2650aP	2650	1	3
DBA3650aP	3650	1	4
DBA4711aP	4711	100	5
	5 484964	106	

	長さ		
名前	[mm]	本数[本]	図番号
DQA1424dP	1424	22	1
DQA1488dP	1488	1	2
DQA1676dP	1676	1	3
DQA1691dP	1691	2	4
DQA1691uP	1691	2	5
DQA1818dP	1818	3	6
DQA1826dP	1826	28	7
DQA1826uP	1826	27	8
DQA1870dP	1870	2	9
DQA1870uP	1870	2	10
DQA1951dP	1951	2	11
DQA1951uP	1951	2	12
DQA1961dP	1961	1	13
DQA1992dP	1992	54	14
DQA1992uP	1992	74	15
DQA2320dP	2320	41	16
DQA2320uP	2320	42	17
DQA2430dP	2430	2	18
DQA2430uP	2430	2	19
	19 621641	310	

	長さ		
名前	[mm]	本数[本]	図番号
DSA0930aP	930	1	1
DSA1500aP	1500	2	2
DSA2444aP	2444	4	3
DSA2487aP	2487	1	4
DSA2510aP	2510	1	5
DSA2607aP	2607	4	6
DSA2724aP	2724	5	7
DSA2842aP	2842	38	8
DSAi1211aP	1211	3	9
DSAi1651aP	1651	43	10
DSAi2390aP	2390	1	11
DSAi2398aP	2398	1	12
DSAi2588aP	2588	43	13
DSAi2592aP	2592	1	14
DSAi2790aP	2790	4	15
DSAi2887aP	2887	4	16
DSAi2955aP	2955	1	17
DSAi3302aP	3302	1	18
DSAi4501aP	4501	39	19
DSAi4631aP	4631	4	20
DSAi4735aP	4735	4	21
DSAig2148aP	2148	1	22
DSAig4061aP	4061	9	23
DSAir2308aP	2308	39	24
DSAir2390aP	2390	2	25
DSAir2495aP	2495	1	26
DSAir2518aP	2518	1	27
DSAir2558aP	2558	8	28
DSAirg1868aP	1868	5	29
	29 754311	271	

Total: 1860 m (except for bellows chambers) Bellows chambers 450 : 90 m

Typical cross sections

Typical B beam pipe

Grooved surface

Typical Q beam pipe

BPM block NEG pump port Photon mask

Typical S beam pipe

Ion pump port NEG pump port Photon mask

- Wiggler beam pipes (Cu)
 - Beam pipes and bellows chambers have been gradually delivered.
 - They will be stored for a while in a new tent.
 - The beam pipes are filled with dry nitrogen
 - The packages of bellows are filled with dry nitrogen

(Thank to M. Shirai)

Bellows chambers

- Some bellows chambers for wigglers have delivered.
- Bellows chambers with aluminum body were manufacturing for test.
- RF properties were checked by comparing a dummy pipe.

⁽Thank to T. Abe, KEKB RF group)

Present status and plans_8

- Remained beam pipes [fixed plan]
 - Tsukuba straight sections incl. local correction sections:
 165x2 = 330 m (Cu 200 m?) [LER and HER]
 - Fuji cross sections [LER]: 7 m [LER]: 11 m [HER]
 - HER Wiggler sections: 121 m
 - Special beam pipes, ex. Tapered beam pipe, dump chambers, X-ray monitor chambers [LER and HER]
 - IR beam pipe [HER and LER]
 - For ARES cavities (Fuji, Nikko, Oho): 182 m
- Manufacturing of these chambers will start soon.
- Design of special chambers, such as injection chambers, dump chambers, X-ray monitor chambers, will also start soon.

Beam pipe manufacturing time schedule (preliminary)

		FY2009	FY2010	FY2011	FY2012	FY2013	FY2014	FY2015
LER								
Wiggler	Cu		\rightarrow	\leftrightarrow				
Wiggler downstream	Cu			\longleftrightarrow	1			
Chicane	Cu			\longleftrightarrow				
Bellows	Cu		\rightarrow		├ →			
Arc section (regular part)	AI			\longleftrightarrow	•			
Bellows, GV	Al, Cu			←──	├ ──>			
Tsukuba (LC)	Al?				\longleftrightarrow	•		
Other beam pipes	Al, Cu				K	\rightarrow		
Bellows, GV	Al, Cu					\longleftrightarrow		
Other components						×	\rightarrow	
HER								
Wiggler chambers	Cu			\longleftrightarrow				
Wiggler downstream	Cu			\longleftrightarrow				
Bellows, GV	Cu			←──	├ ──>			
Tsukuba (LC)	Cu?				\longleftrightarrow			
Other beam pipes	Al, Cu				<	\rightarrow		
Bellows, GV	Cu					\longleftrightarrow		
Other components						<u> </u>	\rightarrow	
Upgrade of bellows, GV	Cu						<	
TiN Coating				<u> </u>		\rightarrow		
Cabling, Piping					_	←──	\rightarrow	
Insallation							\rightarrow	

Present status and plans_10

Pre-baking and TiN coating in KEK

- Workflow of beam pipe assembly
 - Transfer of beam pipes to OHO experimental hall.
 - **TiN** coating
 - Assembly of NEG pumps
 - Prebaking (150°C 24 hours)
 - N₂ filling
 - Transfer of beam pipes to reservation area, or into tunnel.
- TiN coating
 - 5 sets for Q and S beam pipe, and 2 sets for B beam pipe.
 - One coating process will take 4~5 days.
 - Coating for 800 beam pipes (arc section) will take ~1.5 years.

Present status and plans_11

Pre-baking and TiN coating facility in KEK

- The facility will be set up in autumn at OHO experimental hall this year.
- (by H. Hisamatsu) TiN coating for B beam pipe TiN coating for S, Q beam pipe **Baking stations**
- Three floors

- Upgrade of the vacuum system for Super-KEKB has started.
 - The design basically continues the policy in KEKB, introducing new ideas.
 - Most of designs and R&Ds for key components have finished.
 - Aluminum-alloy beam pipe is now adopted for LER.
 - More powerful countermeasures against EC effects are embedded especially in dipole magnets.
 - Further studies are required for movable masks.
 - Baking and TiN coating facilities will be ready this year.
 - Manufacturing of beam pipes and bellows chambers for LER wiggler sections had started last year.
 - For LER arc and straight sections, It will start this year.
 - Remained parts of LER and HER will follows.

Thank you for your attention

Possible mask locations and beam parameters (Y. Ohnishi)

		LER Arc	LER SL*	HER Arc	HER SL*	
H-mask	$\sigma_{\rm x}$	272	217	475	167	μ
	β _x	23.2	14.8	52.4	6.52	m
	ε _x	3.2	←	4.3	←	nm
	d _x	11.1	0.81	8.04	0.084	mm
	σ_{y}	16	2.35	17	2.48	μ
	β_{y}	30	0.64	27	0.57	m
V-mask	β_y ϵ_y	30 8.64	0.64 ←	27 10.8	0.57 ←	m pm
V-mask	$\frac{\beta_{y}}{\epsilon_{y}}$	30 8.64 0.27	0.64 ←	27 10.8 0.25	0.57 ←	m pm %

*Non-linear collimation scheme

Microwave Instability (H. Ikeda, K. Oide)

– For $\sigma_z = 5 \text{ mm}$

Loss factors and kick factors for main components

2011/2/1	末次				
Component		Loss factor [V/C]	Number of items	Loss factor (total) [V/pC]	Kick factor (total) [V/pC/m]
Al Al		1.14E+09	3000 [m]	3.42	
Resistive wall	Cu	8.22E+08	3000 [m]		
Pumping port		3.65E+02	3000 [m] 1.10E-06		
Flange conn	ection	1.45E+07	2000 0.03		
Bellow	s	2.00E+09	900	1.80	35.00
Gate val	ve	3.00E+09	40	0.12	
SR mas	k	1.82E-03	1000	1.82E-12	
Movable n	nask	1.00E+11	8 ?	0.80	~1000
Taper		3.83E+08	100	3.83E-02	
BPM		1.63E+08	450	0.07	
BxB FB BPM		5.90E+08	10	5.90E-03	
FB kicker		5.01E+11	1	0.50	2.50
IP chamber		8.00E+08	1	8.00E-04	?
Groove		1.00E+08	550 [m]	5.50E-02	5.50
Groove (RW x 0.14)*		1.60E+08	550 [m]	8.77E-02	
Clearing Electrode		2.00E+08	160 [m]	3.20E-02	27.00
Cle Ele (RW-W)**		8.70E+08	160 [m]	1.39E-01	
Cavity (ARES)		4.35E+11	18	7.83	1.20
Total	Al			14.9 + <i>α</i>	
*	RW 50%±	曽し x 80/(90*π)			
2011/2/8 イケステン 40mm方			KEKB Review 201		30

Temperature rise simulation by EGS4

40