Main Ring Magnet System

Magnet design & measurements Installation, survey & alignment

M. Masuzawa

K. Egawa

Y. Ohsawa

H.linuma (new! Relatively young!!)

Superconducting magnet Design & measurements

N. Ohuchi

M. Iwasaki

H. Yamaoka

Z. Zong

Power supply design, tuning Installation & Cabling

N. Tokuda

T. Oki

T. Kawamoto

T. Sueno

Retired but still active, no time to rest

R. Sugahara

K. Tsuchiya

Contents

After the earth quake

- Tunnel Damage
 - Visible mostly at the expansion joints
 - Survey tunnel from inside and outside
- Damaged magnets in the storage area

II. Current status

- Magnet installation
- Field measurement
- R&Ds
 - Rotation mechanism of the sextupole magnets
 - Additional windings of the correction coils of the sextupole magnets

III. Activities for the fiscal year 2012

I. After the earth quake

Few mm displacement

Survey tunnel from inside and outside (1)

Survey tunnel from inside and outside (2)

Survey tunnel from inside and outside (3)

Soil surveying

work in progress

Deformation meas. by Global Positioning System

- Five GPS antennas are mounted on the KEKB buildings, which can access to the tunnel
- One GPS antenna is mounted on bldg.#3
- GPS network is utilized for tunnel network!

Some magnets were damaged in the storage area

All of the KEKB Wigglers are needed at SuperKEKB About 10 KEKB LER dipole magnets are needed at SuperKEKB

Damaged in the storage area

- ✓ Wiggler Magnets:
 - All of the wiggler magnets were checked by field measurements and confirmed to be OK. →See next page
- ✓ Dipole Magnets:
 - Many of them are damaged and unusable.
 - There are probably 10~15 healthy magnets, though they need to be checked by field measurements this year.

thauke

After the earthquake

KEKB wiggler: re-measurement

The KEKB wigglers were re-measured. Two reasons are ;

- The KEKB wigglers will be re-used in SuperKEKB.
 The maximum currents will be increased from
 950 A (I_{max KEKB}) to 1400 A.
- The KEKB wigglers were taken out from the tunnel and were in storage. They collided with each other due to the big earthquake (Mar. 11-th 2011).
- > A rotating coil (long, right and left coils) was used for the measurement.
- > These 3 probes of the rotating coil had been well calibrated during the last measurement.
 - Measure absolute values of area (A) and (B)
 - Measure residual field: (A)+(B)

long coil

right coil

left coil

Results: All KEKB-wigglers are OK.

Residual field check: (A)+(B)

II. Current status(1)

1. Magnets, cables and etc removed.

12

Showing 4 completed items in the tunnel

- 3. In all sections:
- A) KEKB LER dipoles and dipole correctors removed from the tunnel.
- B) SuperKEKB LER dipole positions surveyed and marked on the floor and base plates installed.

4. Installation of the 1st
SuperKEKB magnet (LER 20 dipole) in the tunnel.

3. A) Survey for the new (longer) LER dipole magnets with laser tracker

3.B) Base plates (3/dople) installation in progress.

4. Installation of the **1**st SuperKEKB magnet (LER dipole) in the tunnel.

1st installation of the SuperKEKB magnet on Feb.7th 2012.

The main purpose of this installation was to debug the tools and methods for installing the 4 m dipole over the 6 m dipole.

We installed 2 dipole magnets. The rest of the LER dipoles are scheduled to be installed this year.

II. Current status (2)

$SuperKEKB_LER_B_{arc}$: measurement status

- 111 / 142 dipoles have been delivered.
- 95 dipoles have been measured by a long flip coil system.

Excitation check

assuming the energy ratio $E_{LER}/E_{HER} = 4/7$

I [A]	B _{center} NMR [T]	Poisson	$egin{aligned} \mathbf{B}_{\mathrm{NMR}} / \ \mathbf{B}_{\mu=\infty} \end{aligned}$				
730	0.1660075		0.9953				
760	0.1728672		0.9955				
800	0.1819504		0.9954				
840	0.1910295	0.19035	0.9953				
860							

cf. : Due to constraints of LINAC, the injection and QCS system, $E_{LER\ max} = 4.28571\ GeV,\ E_{HER\ max} = 8.75875\ GeV$

2012/2/20 k = 0.0561 & E = 4.28571 GeV

bL[x] measured by long flip coil

1.0005

measure 4 times at each point.
Their variation (example) is;

σ/average	5.7e-05
σ	285.697
average	5024673.5

skbLB_bL_ar04

860 A

Measure 0A, 500A, 700A, 800A as well.

R&Ds

- 1. Rotation mechanism of the sextupole magnets
- Mechanical rotation :
 - $-30 < \Delta\theta < 30$ degrees (over spec?)
- 24 sextupole magnets needed for LER (+ needed for HER?)
- $\Delta\theta = 0$ degree

- 2. Additional windings of the correction coils of the **ALL** sextupole magnets (~100/ring)
- Needs to establish faster way to wind coils

Work is needed to be done IN the tunnel! (photo from KEKB. 20 turns/pole with a single wire)

Rotation mechanism of the sextupole magnets

Additional windings of the correction coils

- → We will try to wind an additional ~50 turns/pole efficiently on the poles of the magnets in the beam line.
- → Use of flat cables is being investigated.
- → Temperature rise for multi layer cases.

Activities for the fiscal year 2012

I. In the tunnel: many and many!

		_	4	5	6	\Box	7	T	8	9	-	10	+	11	1	2			2		3>
LER/HER Survey	All arcs and straights						\top	Τ	\Box				\Box	Ţ	J		\Box	П	Ţ		
Survey data analysis																			v pip		
LER/HERQmag Alignment	6mag/day/team														The				syste	m	П
Remove magnets from Tsukuba arc	~70 magnets													T	IIIE	I I	Ly	I		Τ	
Marking Tsukuba Beam lines	Tsukuba/3C/12C																				
Base plate installation	Tsukuba/3C/12C																				
LER wiggler position marking (280 mag)	Nikko/Oho																				O'
Wiggler base plates installation	Nikko/Oho																				
Wiggler installation & alignment	Nikko/Oho					T							\top					~	17		
Chicane magnet	Nikko					T		\top	Т				\top			~				Т	П
BS2* magnets	Nikko/Oho					T	\top	Т	Т				\top		\overline{M}					Т	
HERQmag replacement (7mag)	Oho					T	\top	Т	Т				Q	Y	7					Т	
LER B supports alignment	arc sections					T	\top	\top	T	П	\neg		7					\neg			П
LER B installation/alignment	arc sections										\neg		\top								П
LERStV installation/aligment	arc sections												\top								П
IR movable table design work						Í	Ī	Ť	Ī			Ī	Ī							Ī	

II. Field measurement III. GPS network

LER new dipole: ongoing

new wigglers : from spring 2012

LER_Q ($L_{eff} = 0.5837$): from spring 2012

HER 2 / 2 Qx : from spring 2012

etc....

In the tunnel

Both ends of IR

Magnets, cables,,, scheduled to be removed.

In all sections:

✓ LER dipoles (100),

Two important keys:

- Careful scheduling with a work of the vacuum/magnet cooling water system by the Plant and Facilities Department,
- Control tunnel temperature at SuperKEKB operating value for precision survey and alignment!

replaced by shorter ones this year.

Thanks

New magnets (normal) production status

2012.2.15

LER magnet	number	specification	status			
Dipole B_arc, B_lc	114 (+2) + 24 (+2)	fixed	being delivered			
Wiggler: half / single pole	112 (+2) / 56 (+2)	fixed	will be delivered in Mar. 2012			
Short dipole	2	not yet	2012			
Q (Leff =0.5837)	20	≈ kb_Q.rf	will be delivered in Mar. 2012			
QK (skew Q)	10	not yet	2012			
SL + skew Sx (rotatable)	8 + 24	not yet	2012			
Vertical Corrector	~ 220	fixed	will be delivered			

2012/2/20

HER magnet	number	specification	status
Dipole (4 m) ⊂ LER dipole	13	= LER B_lc	being delivered
BC* $L_{eff} = 0.3444$	8	not yet	2012
additional kb wiggler	+ 22	fixed	?
Q (0.56 m)	38 (+ 1)	≈ kb_Q.arc	Contract process has started.
Q (1.12 m)	2 (+ 1)		Contract process has started.
Qx	8 (+ 1)	≈ KB_QX	delivered
QK (Leff = 0.3444/0.3723)	6 + 2	not yet	2012
SL + skew Sx (rotatable)	<i>8 + 24</i>	not yet	2012
012/2/20			28

10 turns (x 10 A) = 100 AT are wound with the main coil.

→ These will be used to generate normal quadrupole field for beam-based alignment.

A request was made by the optics group to prepare additional windings to generate skew quadrupole field.

- → Power supplies will be newly made for the additional coils.
- →Specifications have not been fixed yet. We will try to wind an additional ~50 turns/pole efficiently on the poles of the magnets in the beam line.
- → Use of flat cables is being investigated.

2012/2/20

Rotation by steeping motor

3 degrees/0.36 million pulses & 3 degree/gear tooth

- Takes ~4 minutes to rotate 15 degree
- Very smooth rotation up to ±10 degree
- becomes heavier beyond ±10 degree
- Rotation up to ±30 degree achieved

Reproducibility, coupling to the horizontal/vertical motion, stability etc, need to be checked (and probably need to be improved).

Handling of the power cables and cooling water pipes need to be examined.

bL[x] measured by long flip coil

	average	5024673.5
	σ	285.697
	σ/average	5.7e-05
20	12/2/20	

Their variation (example) is;

We made 8 pass-through holes on each top of building along KEKB ring

Look up view from access road to the tunnel@6C

Look down view from the scope

In all sections:

- ✓ KEKB LER dipoles and dipole correctors removed from the tunnel.
- ✓ SuperKEKB LER dipole positions surveyed and marked on the floor and base plates installed.
- LER dipoles (100),
 LER vertical dipole
 correctors(~220),
 LER wigglers (280)
 scheduled to be installed this
 year.
- ✓ 36 KEKB wigglers scheduled to be installed in HER next month.
- √ 7 quadrupole magnets replaced by shorter ones this year.