KEKB Review 2012

Positron Source Upgrade

KEKB injector linac Takuya Kamitani

SKB Injector

KEKB Review Comittee (2012.02.21) Positron Source Upgrade (Takuya Kamitani)

2

Positron Source Upgrade items

- positron production target
- positron matching device
 - capture accelerating structure
- capture DC solenoid
- positron beam line & quad focusing system
- damping ring, LTR, RTL

SuperKEKB Capture section

flux concentrator R&D + SC solenoid

5

Flux concentrator BINP-type

 in collaboration with BINP, prototype field measurement & high-power operation test performed at KEK from Nov. 2010 to March 2011.

102045.cs

"Bt_R-L/2" "Bt_U-D/2"

Z-scan @X=0.0mm, Y=0.0mm line

0.15

0.10

0.05

0.00

[Tesla]

U-D/2)

BINP FC breakdown issue

- Breakdown problem (vacuum burst by sparking) above 7 Tesla field level
- investigation with BINP experts continued at KEK until March 11 2011, collaboration work interrupted by the Earthquake.
- investigation of the FC will be performed at BINP by disassembling the magnet body.
 - we continue collaboration study for future upgrade of FC.

Flux concentrator SLAC-type

with helps of SLAC and IHEP we are going to fabricate SLAC-type FC for linac commissioning from 2013 autumn and stable operation at T=0.

SLAC-type FC at IHEP

FC fabrication R&D

- careful discharge wire cut processing is needed to have smooth surface of FC slit.
- sapphire pulley and wire support structure are prepared, test processing soon starts.
- hardening of copper FC body is necessary to shift mechanical resonance frequency from 50 Hz.
 - manual pressing
 - hard copper material (HRSC)

Heat Resistance, high Strength & Conductivity copper (Mitsubishi Material co.)

hard even after brazing ! conductivity ~ 80% of OFC

FC simulation study

design trial study in modified shape is ongoing for possible performance improvement (by Zang Lei)

for

higher peak field lower transverse field better adiabatic field

Superconducting solenoid

- Beam irradiation tests are performed to evaluate quenching limit.
- No quench in 10 minutes at 3.2 Tesla with irradiation of 1.7 GeV e- beam of 6nC x2 x 49 Hz. The Earthquake has discontinued the further study.
- Cost of refrigerator to make up for radiation heating will be a problem.
- need more time of R&D for future e+ source upgrade

Positron Production Target

KEKB Review Comittee (2012.02.21) Positron Source Upgrade (Takuya Kamitani)

12

SKB positron target

149

- KEKB target was optimized to pulsed air-core coil configuration.
- SKB target need to be optimized to FC configuration.
- amorphous Tungsten is used at T=0 and will be upgraded to crystal. (precise axis alignment needed)

target destruction issue

Energy density vs Beam spot size

electron bypass hole in target

- pulse-to-pulse e+/e- beam switch by orbit bump with pulse steering magnets.
- injection e- beam pass through small hole in target assembly.
- to preserve e- low emittance e- orbit on the beam axis and e+ orbit 4 mm offset at SKB.
- FC axis at 3 mm offset considering FC field center offset and DC solenoid on the axis.
- to avoid transverse kick by solenoid fringe field and spiral excursion

L-band & LAS (Large Aperture S-band) components development

KEKB Review Comittee (2012.02.21) Positron Source Upgrade (Takuya Kamitani)

16

why L-band + LAS ?

L-band

- Iarge aperture (d=39~35mm) of accel. structure is desirable for transverse acceptance of Positron Capture Section
- coprime (5:11) frequency relation is effective to sweep out satellite bunches critical to DR radiation shield issue.
 Full S-band (LAS) capture section gives comparable e+ yield, but with plenty of satellite particles

LAS (Large Aperture S-band)

- medium large aperture (d=32~30mm) is desirable for transverse acceptance of PCS and quad focusing system
- existing S-band rf source, SLED, DC solenoids are available & compact Q at FODO (reduction in initial cost)

L-band klystron

- 40 MW L-band(1298 MHz) klystron PV-1040 designed by KEK and Mitsubishi Electric
- compatible with existing S-band modulator and KLY tank in KEKB linac
- first PV-1040 delivered in March 2010
- performance test since June 2011
- KLY operation spec. at SKB linac 30 MW x 1.5 us x 50 pps achieved !
- another two PV-1040 will be delivered, we will have three L-band klystrons for
 - (1) positron capture section
 - (2) bunch compressor at DR
 - (3) spare

(KLY data by S. Matsumoto)

klystron PV-1040 performance

L-band accelerating structure

first L-band structure completed in March 2010
operation test at test stand from April 2012

- RF frequency 1298 (=2856 x5/11) MHz
- traveling-wave structure (short rf pulse)
- constant gradient
- (2/3)pi phase advance per cell
- structure length 2.2 meter
- disk aperture 2a = 39.4 ~ 35.0 mm
- field strength 12 MV/m@15 MW input
- single feed coupler (with field symmetrized)
- attenuation constant tau = 0.26

L-band structure test stand

high power
 operation test
 stand in linac
 tunnel (offline)

built-in collinear rf power load

- L-band rf coupler limits DC solenoid inner radius >= 180 mm
- for regular cell region, the radius can be 130 mm
- with built-in collinear power load, the output coupler can be omitted and end-tail become thin

22

Beam

Kanthal as rf absorber

- Kanthal (A1) : Fe (72.2%) + Cr (22%) + AI (5.8%) alloys
- trademark owned by Sandvik in Sweden
- used for making protective layer
- electrical insulator, high thermal conductivity
- melting point (1,500 °C)
- used for high power load in S-band structure at DESY

Kanthal cavity cell at DESY

L-band Kanthal cell

- various spraying technique studied for 50 times higher surface resistance and layer stability
- HVOF gives best performance but bad layer quality for slanted injection
- APS is the best candidate

	α
no Coating	1
Arc	60
APS	80
VPS	50
HVOF	120
DESY/LHT	50

ARC: Electric arc spraying APS: Atmospheric plasma spraying VPS: Vacuum plasma spaying HVOF: High velocity oxy-fuel coating spraying DESY/LHT: Coating over a bonding layer (Ni-Al)

waveguide and power load

- WR650 (165.1mm x82.55mm)
- evacuated waveguide system (no gas inside)
- Al guides in most part + some Cu guides
- MO flange

Aluminium (A6063) **E-bend**

Copper waveguide with directional coupler

Large Aperture S-band structure

LAS structures are used,

- in second unit of capture section
- in two accelerator modules just behind capture section
- large aperture and compact outer diameter
 - existing rf source available
 - existing DC solenoid available
 - compact quad outside LAS structure compared with L-band
 - cost-performance balance

- traveling-wave structure
- constant gradient
- (2/3)pi phase advance per cell
- structure length 2.2 meter
- disk aperture 2a = 31.9 ~ 30.0 mm
- field strength 16.4 MV/m with SLED
 6.9 MV/m w/o SLED
- two port input coupler (J-shape side-couple) two port output coupler (ordinary shape)
- attenuation constant tau = 0.112

Beam optical design & tracking simulation

KEKB Review Comittee (2012.02.21) Positron Source Upgrade (Takuya Kamitani)

27

capture section solenoid field

FC + DC solenoid field distribution determines transverse acceptance of capture section and e+ initial emittance.

compensation with huge solenoid²⁹

- adding three huge solenoid compensates field dips in waveguide regions.
- e+ yield estimation is underway to judge whether to install these huge solenoids or not.

parameters for a solenoid module (L=447mm)	L-band solenoid	Huge solenoid
outer radius (mm)	295	680
1-turn wire length (m)	1.28	3.79
# of turns	245	189
current (A)	650	650
wire cross section (mm2)	171	132
power consumption (kW)	14.1	48.3
weight (kg)	606	1341

particle simulation

- e+ capture section (Zang Lei (GPT code), T. Kamitani)
- linac 1~2 sector + LTR (N. lida (SAD code))
- DR beam dynamics (H. Ikeda)
- RTL + linac 3~5 sector + BT-line (N. lida (SAD code))
- e+ capture section tracking
 - e+ generation by GEANT4 or EGS4
 - FC field evaluated by CST EM Studio
 - DC solenoid field evaluated by CST EM Studio and data smoothed by approximating with analytic function
 - L-band structures Eacc = 10 MV/m, aperture 2a = 35 mm
 - ◆ LAS structures Eacc = 10 MV/m, aperture 2a = 30 mm
 - acceleration and deceleration phase modes

tracking in capture section

e+ capture animation

from target to capture section exit (120 MeV)

Capture efficiency is comparable in either mode.

optical matching & e- elimination^{**}

- optical matching from solenoid focusing region to FODO quad system
- e+/e- separator chicane and e- stopper for low energy e- from target, (injection e- go beside the stopper)
- collimators to remove offmomentum particles

(optics calculation

by T. Miura)

e+ beam optics (before DR)

quad focusing system FODO in 60 m + triplets in 45 m before LTR to DR

e- beam optics

- e- beam transport in e+ oriented optics of focusing magnet strength.
 [e+/e- compatible optics] (because most of quads are existing DC magnets in Sector1 and 2 before DR)
- in Sector3 ~ 5 after DR, most quads will be replaced with pulse magnets for flexible optical setting for better matching in difference beam modes

ECS in LTR & BCS in RTL

compression performance

KEKB Review Comittee (2012.02.21) Positron Source Upgrade (Takuya Kamitani)

37

Schedule & Summary

Positron Source Upgrade (Takuya Kamitani)

Items	20	12											20	13										2	014										2	2015				T
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	2 1	2	3	4	5	6	7	8	9	10	11	12 1	2	3	4 5	5 6	
																						Lin	ac	e+ l	.ow	be	am	pov	vę	ŕ		Lir	ac	e+	Ço	mm	issi	onin	g	
																						Со	mm	nissi	oni	ng			_	1		for	Fu	ll b	ean	npo	wer			
			B	ear	nlin	e F	Res	stor	atio	òn									Co	nsi	tru	ctio	n		_					С	ons	tru	ctio	n	1	DR,	LEF	R, HI	ER ,	
																	ſ					ויי	· · · ·		- [1								(Com	imis	sion	ning	1
L-band accel. structure					<u> </u>				-							-	-	>																						
L-band waveguide					-			-	-		-					-	+	→																						
LAS structure	_				-		→																																	
Girder				-		→			⊢		┝																													
DC Quad/ST fabrication					-				-						→																									
DC Quad/ST PowerSupply											-						+	→																						
Elux Cono magnat																																								
Flux Conc. magnet								->						₹																										
EC Power Supply prottype					-			2						~																										
EC Power supply oper model									1																															
FC Fower supply oper. model								·									1	→	•																					
DC Solenoid Coil																																								
DC Solenoid PowerSupply																		~																						
De Solenola i owerSuppry																		>																						
Target assembly																																								
movable + fixed Collimator																		~																						
e+/e- separator																		~																						
																		~																						
pulse magnet & PS R&D																																								
pulse Quad/ST fabrication																																								
pulse Quad/ST PowerSupply																																								
Shield structure																																								
																													~											

Summary

- concentrate on fabricating SLAC-type FC for T=0
- need consideration on target protection
- 1st L-band structure to be high-power tested
- L-band collinear load in R&D
- waveguides & loads in fabrication
- L-band klystron 1st tube ready
- LAS structures in fabrication
- DC solenoid field dips are moderated by huge solenoids
- beam optical design almost OK
- particle tracking simulation is ongoing for e+ yield and hardware parameter optimization
- DR, ECS, BCS are in construction