Beam Abort System

1

Toshihiro mimashi 21 Feb. 2012

Introduction + Optics Development of Hardware Beam Abort Kicker and Pulsed Quadrupole Magnet Power Supply Ceramic Chamber **Extraction Window** Issues and Discussion Contents

Very fast rise time (Requirement from RF group) -> Abort Gap : dT < 200nsec (KEKB:500nsec) Make the beam size large @ extraction Window

+ All or Nothing

-> One ring use one power supply

Fig. 16. Schematic layout of the abort system of HER.

Requirements for The 17th KEKB Accelerator Review Committee Beam Abort System

Horizontal

Vertical

	LER	HER
Horizontal Kicker	1	2
Vertical Kicker	1	1
Pulsed Quadrupole	1	4
Lambertson Septum	1	1
Power Supply	1	1
Pulse Compression	2	6
Beam Dump	1	1
Extraction Window	1	1
Water Cooling Ceramic	3	7

 (1)Add Pulsed Quadrupole Magnets to enlarge the beam size @window
(2)Fast rise time of the Horizontal Kicker magnet (Abort Gap 500nsec -> 200nsec)

Components of abort System

 ΔT dose not depend on window thickness. (Lowest order)

	KEKB (LER)	SKEKB (LER)	SKEKB (HER)
E (GeV)	3.5	4 (4.16)	7 (8.6)
εx (nm)	24	3.2	4.6
σx(mm)@window	0.68	1.22	0.88
Vertical Sweep (mm)	10	10 (15)	10(15)
I (A)	2	3.6	2.6
l/σ _x (A/mm)		3	

Abort System Parameter

N.lida et al

LER

HER Optics Kicker and Pulsed Quadrupole Magnets
Power Supply
Ceramic Chamber
> Spattering
Extraction Window

Developments of Hardware

	HER			LER				
	Н	V	Q	Н	V	Q		
θ(mrad)	2.3	0.35	-	1.68	1.05	-		
B (T,T/m)	4.09e-2	2.5e-2	1.5 (B')	3.3e-2	4.1e-2	1.5(B')		
l total (kA) (/coil)	9.2 (2.3)	0.47	11.7 (2.2)	3.6 (1.8)	0.8	4.3 (2.15)		
Gap (mm)	70	70	35 Bohr Rad	70	70	42.5 Bohr rad		
L of Ferrite	400x4	400x1	400x8	350x2	350x1	400x2		
# of coil	4	1	8	2	1	2		
L of Ceramic	500x4	500x1	500x8	500x2	500x1	500x2		

Abort Kicker and Pulsed Quadrupole magnet Specifications

Saturable Inductance + Power Crowbar Circuit

Free-wheeling diode, which reduces the pulse through the primary switch quite a lot

Magnet and Power Supply

Development of water cooling ceramic chamber

- -> Compact Chamber (Kicker Gap 90mm->70mm)
- -> Cu coating in side the Kovar sleeve (100um)

Length of Ceramic	500mm			
Estimated power loss	∼1kW			
Ti coating thickness (Inner wall of Ceramic)	6µm			
Cu coating thickness (Inner wall of Kovar sleeve)	>100µm			
Innor wall	Race Track 60x40 (LER)			
miller Wall	Circle r=40 (HER)			

Ceramic Chamber

Single Ceramic : Hollow Type ceramic

Double tube structure brazing side of ceramic.

For the Ti coating of inner wall of the ceramic chamber

Spattering

T.Mori et al

The 17th KEKB Accelerator Review Committee

15

Current of the coil

Magnetic Field With chamber

Magnetic Field Without chamber

Delay of the Magnetic Field

An Accelerator Study for Ti 1100mA 7GeV Extraction Window

Damages of Ti Plate

@1.1A HER

# Ti Plate	Radiation Length (Fe)	Energy Deposit	δΧ	δT Ti	Current Density	Ti Alloy (1mm)	Ti (1mm)
	0	4.9	1.17	58	0.5	0	0
	0.25	6.8	1.17	80	0.8	-	-
0	0.5	11.4	1.17	134	1.3	0	0
1	0.75	18.7	1.17	220	2.1	0	0
2	1.0	28.6	1.17	338	3.3	0	0
3	1.25	41.2	1.17	485	4.8	0	Δ
4	1.5	56.5	1.17	666	6.5	Δ	×
5	1.75	74.5	1.17	880	8.4	Δ	×
6	2.0	95.2	1.17	1123	10.9	Δ	×
7	2.25	118.5	1.17	1399	21.2	Δ	×
8	2.5	144.6	1.17	1705	25.8	Δ	×

The 17th KEKB Accelerator Review Committee

×:Damaged (uneven) O: OK \triangle : There is a mark but not bulge.(Flat surface)

Ti 1mm

Ti 0.5 mm

Ti 0.2mm

	Ti
melting point	1941
boiling point	3560
specific heat	0.52

Damage of Ti Plate Thickness dependence

Thickness Dependence of Ti Plate Damage

# Ti	δТ	Ti Alloy (mm)				Ti (mm)			
Plate	Ti	1	0.5	0.2	0.1	1	0.5	0.2	0.1
	58	0	-	-	-	0	-	-	-
	80	-	-	-	-	-	-	-	-
0	134	0	-	-	-	0	-	-	-
1	220	0	-	-	-	0	-	-	-
2	338	0	0	Δ	\triangle	0	0	0	0
3	485	0	0	-	-	Δ	Δ	-	-
4	666	Δ	0	×	×	×	Δ	×	×
5	880	\triangle	-	×	-	×	-	×	×
6	1123	\triangle	Δ	-	-	×	\triangle	×	×
7	1399	\triangle	-	-	×	×	-	-	×
8	1705	Δ	Δ	×	×	×	Δ	×	×

The 17th KEKB Accelerator Review Committee

×:Damaged O: OK \triangle : There is a mark but not bulge.

Gives 500°C heat to the 1x10 mm area (T=0) and calculate stress propagation

Simulation of the window

- Possibility to use two Sextuple Magnets instead of Pulsed magnets to enlarge the horizontal beam size at the extraction window
- Optimize the thickness of the inner Ti coating of the ceramic chamber
- Need to understand the Ti window damage process.
- The vertical beam moving is necessary to diffuse heat on the window, and do we need the horizontal beam moving ?
- Because of bad economic situation, the company TDK won't produce Ferrite core any more. We have to look for the company that make ferrite core for us. We hope our government won't cut 7.8 % of our salary, we will buy the product of TDK.

Issues and Discussions

Vertical Kicker and **Horizontal Kicker** current

*Damage of Ti plate

Shower development (EGS 5)

