

SYNCHROTRON INJECTION

T. Mori

The 17th KEKB Accelerator Review Committee Feb. 21, 2012

Why it necessary?

- Very low survival rate with betatron injection into HER is expected
 - If offset Δx from IP for betatron oscillation,
 - Kicked vertically by beam-beam force from the colliding beam

Synchrotron oscillation ⇒ no offset Δx (∵ $\eta^* = 0$)
 Synchrotron injection (as a backup option of betatron inj.)

Synchrotron Injection

- Take advantage of synchrotron oscillation
 - Generate dispersion $(\eta_{\chi R})$
 - Injection with energy difference ($\delta_0 = \Delta p/p_0$)

•
$$\Delta x = \eta \delta_0 = n_I \sigma_{\chi I} + w_S + n_R \sigma_{\chi R}$$

$$\sigma_x = \sqrt{\beta_x \varepsilon_x + (\eta_x \sigma_\delta)^2}$$

Parameter assumption

- $w_S = 5[\text{mm}]$
- $\beta_{xR} = 60[m]$
- $\varepsilon_{xR} = 4.6[\text{nm}]$
- $\sigma_{\delta R} = 0.059[\%]$
- $n_R = 3.0$
- $\beta_{xI} = 20[m]$
- $\varepsilon_{\chi I} = 1.46[\text{nm}]$
- $\sigma_{\delta I} = 0.1[\%]$
- $n_I = 2.5$

Synchrotron Injection What are requirements to realize? $\Delta x = \eta_{xR} \delta_0 = n_I \sqrt{\beta_{xI} \varepsilon_{xI} + (\eta_{xI} \sigma_{\delta I})^2} + w_S + n_R \sqrt{\beta_{xR} \varepsilon_{xR} + (\eta_{xR} \sigma_{\delta R})^2}$ Orbit shift Stored beam spread Injected beam spread Septum width Assumption from optics study: $\delta_0 + 2\sigma_{\delta I} = 0.65[\%]$ 0.005 $w_{S}[m]$ 0.0045 0.004 $\sigma_{\delta I} = 0.1[\%] \& \eta_{\chi R} = 1.4[m]$ 0.0035 $\Rightarrow w_{\rm S} < 3$ [mm] required 0.003 0.0025 0.002 $\sigma_{\delta I} = 0.0012$ Important parameters 0.0015 $\sigma_{\delta 1} = 0.0010$ $\sigma_{\delta 1} = 0.0008$ 0.001 W_S , η_{xR} , $\sigma_{\delta I}$ σ_{δ1} = 0.0005 0.0005 Have the 1st order effect 0 0.6 0.8 1.2 1.4 1.6 1.8 η_{xR} |m|

Injection Septum (w_S)

В

 $w_{\rm S} = 2.5 + 1$

Core

Cu

 (\bullet)

- Non-uniform field region included
- KEKB: 5mm
- Issues
 - Magnetic material for vacuum chamber
 - Shim shape
 - To reduce non-uniform region

200µm Cu

Si-Steal

 Δx

 η_{xR}

 $\sigma_{\delta I}$

Injection Septum Upgrade

- Alternation of septum conductor
 - Thickness: $1.5 \text{mm} \rightarrow 1.0 \text{mm}$
 - Skin depth: $1.2mm \implies$ Leakage field should be considered
 - Perform field measurement
 - 3D transient field calculation is too heavy
- Producing
 - 1mm septum conductor
 - Mockup of beam chamber

 W_S

 η_{xR}

 $\sigma_{\delta I}$

Dispersion (η_{xR}) • Optics calculation

<u>Matching</u>

•
$$\eta = -1.6[m]$$

 η_{xR}

 $\sigma_{\delta I}$

 W_S

- $\varepsilon_x = 4.6[\text{nm}]$
- Kicker bump: 25mm

Injection point

Energy Spread $(\sigma_{\delta I})$

- Simple calculation with Linac parameters
 - Acceleration field : 2856MHz
 - Bunch length : FWHM = 3[mm]
 - On crest acceleration
 - Space charge & wake field are not considered

	Gaussian beam	Rectangular beam
$\sigma_{\delta I}$ [%]	0.41	0.12
Injection efficiency	0.7	<u>0.9</u>

• Assuming only $\delta_I \leq 0.1[\%]$ part of beam is successfully injected

 Study is on going in Linac group to reduce energy spread $\eta_{\chi R}$

 $\sigma_{\delta I}$

Result & Summary

- Due to hour-glass effect, very low survival rate with betatron injection into HER is expected <u>synchrotron injection</u>
- Considered requirements for synchrotron injection scheme
 - Effective septum width: 3.5mm
 - Dispersion: −1.6m
 - Energy spread: $\sigma_{\delta I} = 0.1\%$
- In progress
 - Septum
 - Shim of pole
 - Storage beam chamber
 - 1mm septum conductor
 - Injection tracking
 - Check survival rate

Thank you!

Backup

Motivation

- Betatron injection is impossible
 - Because of low emittance
- More phase space expected in synchrotron oscillation

• $\Delta x \sim 7 \text{[mm]}$ • $\varepsilon_x = 4.6 \text{[nm]}$ • $\beta_x \sim 100 \text{[m]}$ • $\sigma_x \sim 700 \text{[µm]}$

Synchrotron Injection

- Take advantage of synchrotron oscillation
 - Generate dispersion (η) at injection point
 - Injection with energy difference (δ_0)
 - $\Delta x = \eta \delta_0 = n_I \sigma_{xI} + w_S + n_R \sigma_{xR}$
 - $\bullet \ \delta_0 + 2\sigma_{\delta I} = 0.65 [\%]$

 $\sigma_x = \sqrt{\beta_x \varepsilon_x + (\eta_x \sigma_\delta)^2}$

KEKB parameters

- $w_S = 5[\text{mm}]$
- $\beta_{xR} = 60[m]$
- $\varepsilon_{\chi R} = 4.6$ [nm]
- $\sigma_{\delta R} = 0.059[\%]$
- $n_R = 3.0$
- $\beta_{xI} = 20[m]$
- $\varepsilon_{xI} = 1.46[\text{nm}]$
- $\sigma_{\delta I} = 0.1[\%]$
- $n_I = 2.5$

Gaussian Beam

- $\sigma_{\delta} = 0.4[\%]$
- Obtain $\sigma_{\delta} = 0.1[\%]$
 - $\delta_{cut} = 0.4[\%]$
 - Efficiency : 0.7

Rectangular Beam

- $\sigma_{\delta} = 0.12[\%]$
- Obtain $\sigma_{\delta} = 0.1[\%]$
 - $\delta_{\text{cut}} = 0.4[\%]$
 - Efficiency: 0.9

セプタム磁場の温度依存性

