

Optics Correction

Hiroshi Sugimoto (KEK) for SuperKEKB Optics Group

Contents

Correction of XY Coupling and Vertical Dispersion
 Correction of Betatron Function
 Full Optics Correction

Introduction

- Correction of beam optics errors will be a critical factor in SuperKEKB.
- Innovative optics measurement & correction schemes are probably necessary at high-current beam operation.

i.e. Horizontal & vertical (XY) coupling measurement with single-pass BPMs. (Ref. Ohnishi's talk @ the 16th KEKB review)

- On the other hand, KEKB based optics measurement using closed orbit distortion (COD) will be employed at early stage of the commissioning and low-current and non-collision operation.
- It is informative to investigate how effective is KEKB based scheme.

Today's Report

Optics Correction with KEKB based scheme

- 1. XY-Coupling and Vertical Dispersion
- 2. Betatron Function
- 3. Full Optics Correction

XY-Coupling and Vertical Dispersion

Measurement & Correction Scheme

- XY-coupling measurement & correction.
 - 1. XY-coupling is estimated by observing the vertical leakage orbits associated with horizontal kick.
 - 2. Suppress the vertical leakage orbit by skew correctors.

• Vertical dispersion measurement Use vertical orbit response with RF frequency change.

Correctors

- Skew winding of sextupole magnet will be available.
- Symmetric / asymmetric excitation of skew-corrector pare can be used as orthogonal correctors for coupling and vertical dispersion.

Simulation

- Assumptions
 - No orbit drift in time.
 - Zero-current (ignore intra-beam scattering in emittance evaluation).
 - No error source in the IR region.

	Vertical misalignment [µm]	Rotation error [µrad]				
Normal quadrupoles	0	100				
Normal sextupoles	100	0				
Sextupoles (local chromaticity)	50	0				

Error Source

All errors are Gaussian distributed.

Skew correctors are adjusted by measured optics and response matrix of the model lattice with singular value decomposition.

Simulation Example

Before Correction

The 17th KEKB Accelerator Review Committee

Simulation Example (No BPM Error)

After Correction

Vertical Emittance and BPM Jitter Error

• 100 simulations with different seed of random numbers.

• Corrections of XY-coupling and vertical dispersion effectively reduce vertical emittance.

Vertical Emittance and BPM Jitter Error

• 100 simulations with different seed of random numbers.

• Iterative correction is effective especially when BPM jitter error is large

Vertical Emittance and BPM Rotation Error

• 100 simulations with different seed of random numbers.

• BPM rotation error should be less than 0.5 mrad for the target vertical emittance.

Dynamic Aperture (DA)

• 100 simulations with different seed of random numbers.

• DA is dramatically improved by the optics correction.

Betatoron Function

Beta Measurement

- Analyze CODs induced by steering kicks.
- COD at the *i* th BPM induced by *j* th steering kick in two forms.

$$\Delta x_{i}^{j} = \frac{\Delta k_{j}}{2 \sin \pi v_{x}} \left(\cos \pi v_{x} X_{j}^{S} - S_{ij} \sin \pi v_{x} Y_{j}^{S} \right) X_{i}^{M} + \left(\cos \pi v_{x} Y_{j}^{S} + S_{ij} \sin \pi v_{x} X_{j}^{S} \right) Y_{i}^{M}$$

$$\widehat{\Gamma} = \frac{\Delta k_{j}}{2 \sin \pi v_{x}} \left(\cos \pi v_{x} X_{i}^{M} - S_{ij} \sin \pi v_{x} Y_{i}^{M} \right) X_{j}^{S} + \left(\cos \pi v_{x} Y_{i}^{M} - S_{ij} \sin \pi v_{x} X_{i}^{M} \right) Y_{j}^{S}$$

$$\widehat{\Gamma} = G \left(X_{j}^{S}, Y_{j}^{S} \right) \cdots \text{ Form 2} \qquad X_{i}^{M S} = \sqrt{\beta_{i}^{M,S}} \cos \phi_{i}^{M,S}$$

$$Y_{i}^{M,S} = \sqrt{\beta_{i}^{M,S}} \sin \phi_{i}^{M,S}$$
Find $\left\{ X_{i}^{M}, Y_{i}^{M} \right\}$ and $\left\{ X_{j}^{S}, Y_{j}^{S} \right\}$

which reproduce measured beam positions $\left\{\Delta x_{i meas}^{j}\right\}$

• The solution is obtained by iteratively minimize two quadratic functions.

$$S_1\left(X_i^M, Y_i^M\right) = \sum_{i,j} \left| \Delta x_{i\ meas}^j - F\left(X_i^M, Y_i^M\right) \right|^2 \qquad S_2\left(X_j^S, Y_j^S\right) = \sum_{i,j} \left| \Delta x_{i\ meas}^j - G\left(X_j^S, Y_j^S\right) \right|^2$$

•

Beta Measurement @ SuperKEKB HER

No BPM Jitter

• This scheme inevitably has two ambiguous.

Beta Measurement @ SuperKEKB HER

No BPM Jitter

• To avoid the ambiguous we use difference between neighborhood BPMs in the optics correction.

Simulation of Beta Correction

- Assumptions
 - No orbit drift in time.
 - Zero-current (ignore intra-beam scatteringin emittance calculation).
 - No error source in the IR region.
 - Exact values of perturbed tunes are known.
- Error Source (Gaussian distributed)

 $\frac{\Delta K_1}{K_1} = 5 \times 10^{-4}$ All normal quadrupoles

- Beta Measurement
 - Use 6 horizontal and 6 vertical orbit kicks.
 - Orbit amplitude at Arc section is about < 1mm.
- Corrector

all quadrupoles (fudge factor of the electric power supplies)

Beta Correction @ SuperKEKB HER No BPM Jitter

The 17th KEKB Accelerator Review Committee

Global Beta Beat After Correction (SuperKEKB HER)

• 100 simulations with different seed of random numbers.

• Typically, global beta beat for 2 micro bpm jitter is within $\sim 5\%$ for horizontal and within $\sim 10\%$ for vertical betatron motion.

Full Optics Correction

Measurement Method and Corrector Knob

• All measurements are based on COD or its response.

	Measurement Method	Corrector Knob	
COD	BPM reading	Horizontal/Vertical Steerings	
XY Coupling	COD response associated with horizontal steering kick	Skew winding of sextupoles	
Vertical Dispersion	COD response associated with RF frequency change	Skew winding of sextupoles	
Betatron Function&Phase	COD response associated with steering kick	quadrupole (fudge factor)	
Horizontal Dispersion	COD response associated with RF frequency change	Horizontal mover of focusing sextupoles	

Simulation Condition

Error Source

	Horizontal misalignment [µm]	Vertical misalignment [µm]	Rotation error [µrad]	ΔK/K
Quadrupoles	100	100	100	2.5*10-4
Sextupoles	100	100	0	0

- Assumptions
 - No orbit drift in time.
 - Zero-current (ignore intra-beam scattering in emittance calculation).
 - No error source in the IR region.
 - Exact values of perturbed tunes are known.
- Beam optics is unstable if we introduce the error sources at once.
- Thus, we gradually increase the error amplitude with the optics corrections.

Emittance

• 100 simulations with different seed of random numbers.

- Iterative correction with adjusting correction parameters is necessary to improve vertical emittance.
- Reached vertical emittance is sensitive to the correction parameters especially when BPM jitter is large.

Beta Beat After Optics Correction 2 micro BPM Jitter

- 16 8 14 Vertical Tune Shift [*10^-3] 6 Vertical Beta Beat % 12 2 10 8 -2 6 4 -6 2 -8 9 10 11 6 -2 -3 -1 0 2 3 5 4 Horizontal Beta Beat % Horizontal Tune Shift [*10^-3]
- 100 simulations for different random seeds.

• Vertical beta beat is typically within $\sim 10\%$, and $\sim 5\%$ for horizontal direction.

Dynamic Aperture

2 micro BPM Jitter

- On-momentum aperture is improved to the design level.
- Optimization of higher order multipole magnets is necessary to improve off-momentum aperture (in progress)

Summary and ...

- COD based scheme is applied to SuperKEKB HER lattice.
 - Iterative corrections is necessary to reduce vertical emittance.
 - BPM rotation should be less than 0.5 mrad for the target vertical emittance.
 - In typical case, global beta beat is within $\sim 5\%$ for horizontal and within $\sim 10\%$ for vertical betatron motion.
 - After full optics corrections, we can reach the target vertical emittance.
 - Achieved vertical emittance is sensitive to the correction parameters especially when BPM error is large.
 - On-momentum DA is improved to the design level.
 - As for off-momentum DA, it is expected to be improved by tuning higher order multipole fields, but not confirmed yet.
- To be studied
 - More detailed study on optics measurement using single-pass BPM.
 - Error source in IR region.
 - Orbit drift
 - and so on...

<u>Thank you for listening!</u>