

Overview of Electron / Positron Injector Linac Status

Kazuro Furukawa <kazuro.furukawa@kek.jp> for Linac division

K.Furukawa, KEK, Mar.2013.

Mission of electron/positron Injector in SuperKEKB

40-times higher Luminosity

- ♦ Twice larger storage beam
 → Higher beam current at Linac
- ***20-times higher collision rate with nano-beam scheme**
 - $rac{rac}{
 ightarrow}$ Low-emittance beam injection from Linac (20 μ m)
 - $\varkappa \rightarrow$ Shorter storage lifetime

Linac challenges

- Low emittance e-
 - **¤** with high-charge RF-gun
- Low emittance e+
 - **¤** with damping ring
- Higher e+ beam current
 - \bowtie with new capture section
- Emittance preservation
 - \bowtie with precise beam control

+4+1 ring simultaneous injection

 $(\rightarrow$ Higher Linac beam current)

Review Items in 2012 and Reviewer's Comments

Linac disaster recovery

Earthquake is a natural disaster, a *Force Majeure*. In view of the manpower shortage in the Linac and Storage Ring groups, the committee suggests that the management team look into timeline, milestones and resources, and revise the schedule accordingly.

RF gun and low-emittance transport

Aggressively pursue a demonstration of the QTW gun with LaB₆ cathode and the full power laser.

Positron source

CSR effects in the bunch compressor should be examined. A protection scheme for the target should be developed at least conceptually.

Facility Upgrade

Ohsawa et al.

Super

- Addition of electric power and cooling water is crucial for the upgrade
 - However, the facility division starts the design only after the budget is secured
 - It was only approved in JFY2012 (the facility budget is different from the project one)

Basic schedule

- Design JFY2012, Building JFY2013, Facility JFY2014
- Should not affect PF and PF-AR operation
- Not available during initial commissioning

Higo et al.

Girder Recovery and Alignment

Re-constructing soft-structure girder into hard-structure

Alignment with

- 120m and 480m long-baseline laser between girders
- Laser tracker within a girder (~10m)
- Target: 0.1mm local / 0.3mm global alignment
 - Several iterations necessary for low-emittance beam transport

Beam transport/acceleration test for 600m (Nov.2012)

For the first time after the earthquake

Microwave Power Source Upgrade

Pulsed power modulators

Michizono et al.

- Nine compact modulators are introduced
- Share the same basic design for klystron, flux concentrator, and gun high voltage
- Fast LLRF controllers, power amplifiers, and LLRF monitors
 - For simultaneous injection and bucket selection
 - Pulse-to-pulse stability monitor
 - 50Hz event-based synchronized controls

RF Gun Development

- ♦ Photo cathode : stability, longer life, efficiency $At first LaB_6$, then $Ir_5Ce \rightarrow 5nC$ / bunch
- Laser : higher power, pulse width control
 - ♦ Nd:YAG medium, LD excitation \rightarrow ~1.5mJ / 30ps / pulse at 266nm
 - Polarization control for slant irradiation
 - Yb:YAG fiber laser is introduced
- Cavity : better focusing field, higher gradient
 - DAW (Disk and washer) type cavity
 - Development of quasi-travelling-wave side-coupled cavity as well

Test stands

- RFgun at A-1 is constructed with fiber laser for SuperKEKB
- RFgun at 3-2 was used to inject into PF with proper synchronization
- Long-period demonstration will be performed

Yoshida et al.

Positron Generator Development Kamitani et al.

Flux concentrator

- Collaborations with BINP and IHEP
- Finalized optimization of field and mechanical design
- Fabricated 1st version of 2nd generation, being tested

Large-aperture S-band (LAS) cavity structure

- Positron capture tracking simulation
- L-band structure as backup with co-linear load

Magnet design and fabrication

Solenoid and pulsed steering and quad magnet system

Reliability

- Strategy for failed component replacement
- Acceleration gradient distribution and optimization with backups

Beam Monitors: BPM and WS_{Suwada et al.}

Limited performance with present 8-bit 10GS/s digitizers (oscilloscopes)

- New BPM readout for precise orbit/emittance controls
 - Fast attenuator for 0.1-10nC (SuperKEKB, PF, PFAR) dynamic range
 - Helical BSF (300MHz) for 2-bunch (96ns apart) readout
 - *16bit 250MS/s ADC, FPGA data processing

*****50Hz event-control synchronization

New wire scanner readout was also developed

K.Furukawa, KEK, Mar.2013. 11

Example of Beam Mode Pattern : e⁺ 25Hz / e⁻ 25Hz

- Interleaved e+ and e-, dependency between pulses mostly decoupled
- With bucket selection at the both DR and MR

K.Furukawa, KEK, Mar.2013. 12

Charge

Preliminary Beam Tests in Autumn 2012

- Beam test along 600-m Linac
- for the first time after the earthquake
- Latter half was tuned for PF/PFAR injection
- Alignment will be recovered by 2014
- For energy spread optimization
- Longitudinal beam profile management by photo-cathode RF-gun (30ps square shape)
- And bunch compression at the middle of linac are crucial
 - Preliminary R56 control was performed
 - Design and measurement
 of dispersion function
 with R56=0 and R56=-0.6

Beam along 600-m linac

Linac KEKB e- Orbit AnalyzerLine

å 0.1

Schedule

Winter 2013 : DR switchyard / DR tunnel construction Spring 2013 : A1-RF-gun, Alignment Summer 2013 : Installation of many components ECS, FC (gen.2), DC solenoids, Klystron modulators, WS, etc. Autumn 2013 : e– then e+ commissioning (limited current) Half Linac: PF injection, Day: construction, Night: commissioning Spring 2014 : Pulsed steering, Alignment Summer 2014 : Installation of additional components Cooling water, FC (gen.3), BPM, Pulsed magnets, New PFAR BT, etc. Autumn 2014 : Linac Commissioning Winter 2015 : MR (then DR) injection commissioning

Summary

- Much progress in disaster recovery and construction.
- Still expecting many challenging items to overcome
- Many items are connected with beam emittance and energy spread management
- Injector should start at first !
- RF Gun (M. Yoshida)
- Alignment and Support (T. Higo)
- Positron Source (T. Kamitani)
- Flux Concentrator Modulator Development (M. Akemoto)
- Commissioning of Electron Beam (M. Satoh)
- New Transport Line for PF-AR (H. Takaki)
- Construction status of the damping ring and the beam transport (N. lida)
- Control (T. Nakamura)

Thank you

Linac Upgrade Status towards SuperKEKB

K.Furukawa, KEK, Mar.2013. 16

Super KEKB

Linac Upgrade for SuperKEKB

- Higher Injection Beam Current
 - To Meet the larger stored beam current and shorter beam lifetime in the ring
 - 4~8-times larger bunch current for electron and positron
- Lower-emittance Injection Beam
 - To meet nano-beam scheme in the ring
 - Positron with a damping ring, Electron with a photo-cathode RF gun
 - Emittance preservation by alignment and beam instrumentation
- Quasi-simultaneous injections into 4 storage rings
 - SuperKEKB e⁻/e⁺ rings, and light sources of PF and PF-AR
 - Improvements to beam instrumentation, low-level RF, controls, timing, etc

K.Furukawa, KEK, Mar.2013. 17

Linac Upgrade for SuperKEKB

As a high-field (several Tesla) pulsed solenoid for the positron source of the SuperKEKB injector, KEK is going to fabricate a SLAC-type flux concentrator.

Technical advices from the IHEP experts and design information by the IHEP drawings are quite useful in the development.

Linac Upgrade Status towards SuperKEKB

K.Furukawa, KEK, Mar.2013.