

Commissioning of Electron Beam for SuperKEKB Injector Linac

Masanori Satoh (KEK, Linac Control G.) for the Linac Commissioning Group

The 18th KEKB Accelerator Review Committee, Mar. 4-6, 2013

Super

Electron Beam Parameters

	SuperKEKB Linac	KEKB Linac
Energy (GeV)	7	8
HER stored current (A)	2.6	1.2
HER beam lifetime (min.)	10	200
Maximum beam repetition (Hz)	50	50
Max. # of bunch in a rf pulse	2	2
Emittance (mm·mrad)	20	100
Charge (nC)	5	1
Energy spread (%)	0.08	0.05
Bunch length σz (mm)	1.3	1.3
Simultaneous top-up injection	4 rings (SuperKEKB e-/e+, PF, PF-AR)	3 rings (KEKB e-/e+, PF)

Super

Uniform shape of longitudinal beam distribution

- Energy spread should be less than 0.08%
- Mitigate longitudinal wakefield and reduce energy spread
- Gaussian distribution in momentum space

Energy spread

- For 10 ps bunch length,
 - $\sim 0.3\%$ for Gaussian distribution
 - < 0.08% for uniform distribution
- Uniform distribution is necessary. (rf gun)

Super

Low emittance electron

- Low emittance electron beam should be delivered to MR w/o damping ring.
- Emittance preservation is key issue
- RF gun (M. Yoshida, T. Natsui, X. Zhou)
- Emittance growth simulation (H. Sugimoto)
 - SAD code, Elegant
 - Initial bunch charge: 5 nC
 - Initial emittance: 6 mm·mrad
 - Initial bunch length: 10 ps (FWHM)
 - Initial energy spread : 0.4%
 - Initial beam energy: 20 MeV
 - Uniform longitudinal beam distribution

Bunch compression at Jarc

- Mitigate transverse wakefield and emittance growth
- Initial bunch length 10 ps => 5 ps (bunch compression at Jarc)
- Control R56 at Jarc

Emittance growth due to component misalignment

- Simulation results from 100 different seeds
- Misalignment of Quadrupole magnets and Accelerating structure:
 - $\sigma < 0.1 \text{ mm}$: $\varepsilon 20 \text{ mm} \cdot \text{mrad}$ is almost satisfied.
 - $\sigma > 0.1$ mm: emittance preservation is very difficult.

Emittance (misalignment $\sigma = 0.3$ mm)

Bunch compression is effective. However, still not enough for 20 mm·mrad

Offset injection for emittance preservation

- Offset injection: intentional change of misalignment seed
- Kicks at the beginning of Sector C

- Kick angle is relatively small compared to the case of orbit correction.
- Need a high-precision and stable orbit control.

Offset injection (experiment at Sector A, B)

Effective for high-intensity bunch

Low emittance electron issue

- Component alignment is important
 - $\sigma < 0.1$ mm: good for emittance (alignment is very difficult)
 - $\sigma > 0.1$ mm: Beam manipulation is necessary.
- σ ~ 0.3 mm
 - Jarc: Bunch compression
 - Sector C: Offset injection
 - Emittance can be preserved.
 - Small energy spread is difficult.
- Alignment requirement
 - σ < 0.3 mm for global (whole Linac)
 - $\sigma < 0.1 \text{ mm}$ for local (one Sector ~ 100-m-long)

High Precision Beam Position Measurement

• Current system:

- WindowsXP-based digital oscilloscope
 - 10 GSa/s, 8 bits, 1 GHz bandwidth, 4 channels
 - Acquisition speed: 50 Hz
 - Twenty four systems process 100 BPMs
 - Position measurement precision: 50 µm (3-BPM)
- More precise orbit measurement < $10 \ \mu m$

• New system based on band-pass sampling scheme is under test and development.

New system:					
	Oscilloscope (current)	Libera Brilliance SP	Libera SPE (under test)	KEK-VME based (under development)	
Signal generator (gain calibration)	N/A	N/A	N/A	0	
Band-pass filter	N/A	fc: 522 MHz BW: 24 MHz	fc: 522 MHz BW: 24 MHz	Fc: 300 MHz BW: 30 MHz	
A/DC	8 bits, 10 GSa/s	16 bits, 125 MSa/s	16 bits, 160 MSa/s	16 bits, 250 MSa/s	
Software (EPICS)	0	Ο	0	× (need development)	
Event system	via network	via network	EVR inside (μ-TCA-like)	VME-EVR	
Precision	50 µm (3BPM)	10 μm (test pulser) 20 μm (3BPM, 0.1 nC)	3.5 μm (test pupulser) ? (3BM)	?	
Remarks	FY2015 End of support	Discontinued	Candidate	Candidate	

Simultaneous Top-Up for 4 Rings

Simultaneous Top-up Operation for three rings

Stored beam current stability since Apr. 2009
KEKB: 1 mA (~ 0.05%): e-: 12.5 Hz, e+: 25 Hz
PF: 0.05 mA (~ 0.01%) : 0.5 Hz

PF-AR injection: 20 min., twice daily

- Interrupt KEKB injection
- Problem for SuperKEKB (beam life: 10 min.)

Simultaneous top-up including PF-AR injection

- PF-AR and KEKB share the long part of beam transport line.
- Existing tunnel space is very tight.
- New beam transport line is required for PF-AR top-up injection.

Summary

Stable beam operation (simultaneous top-up for 4 rings)

Feedback loops (energy, orbit , energy spread) Precise beam diagnostic and control Commissioning tools

Low emittance (20 mm·mrad)

rf gun Alignment Bunch compression Offset injection Small energy spread (0.08%)

Uniform longitudinal beam distribution

High bunch charge (5 nC)

Future plan

- Low Emittance Preservation
 - Simulation study
 - Including BPM reading, steering setting errors, and timing jitter
 - Beam study
 - Bunch compression at Jarc
 - Streak camera required
 - Emittance preservation study
 - Wire scanner (Sector2) will be installed
 - Pulse-to-pulse beam stability
- High precision BPM data processing system
 - Evaluation, 3-BPM (beam test)
- Simultaneous top-up 4 rings (including PF-AR)

Thank you for your attention!