TiN Coating and Baking of Beam Pipes

The 18th KEKB Accelerator Review Committee
March 4, 2013
Kyo Shibata (on behalf of KEKB Vacuum Group)

Introduction 1

- What should we do before the installation of new beam pipes?
 - For HER (e-): Baking at the laboratory(not in-situ)
 - For LER (e+) and Damping Ring: Baking & TiN coating at the laboratory
- How many beam pipes should be processed?
 - For HER (e-) : ~180
 - For LER (e+) : \sim 1000 (of which \sim 25 have electron clearing electrodes and TiN coating is unnecessary.)
 - − For Damping Ring : ~100
- Pre-installation works (coating and baking) started on last April.
 - Pre-installation work means:
 Bringing beam pipes to KEKB Oho Lab. from storage area -> Coating (only for LER, 3days) -> Baking (3days) -> returning the beam pipes to storage area
 - Large-scale works by 10 workers with 4 coating equipments and 4 baking equipments started on last September.

2013/3/4

Introduction 2

- What we did after last KEKB Review are
 - Setting up 2 more baking equipments and 4 coating equipments (vertical).
 - Large-scale work in this facility. (This will continue this year.)
 - Setting up 3 horizontal coating equipments for bent beam pipes. (in progress now)
- Topics discussed in this talk are
 - Baking & TiN coating facility, Evaluation of TiN coating, Status report on baking and coating works and Future plan.

2013/3/4

Layout of Oho laboratory 1

- 4 baking equipments: 2 long type (~5 m) and 2 short type (~3 m)
- 5 vertical TiN coating equipments (for straight beam pipes. one of them is back up.)
- 3 horizontal TiN coating equipments (for bent pipes. In preparation now.)

Layout of Oho laboratory 2

View from different place.

Baking 1: Equipment

- Hot-air heating method was adopted.
 - Two beam pipes are mounted up and down in one hot-air oven.
 - Hot-air oven consists of movable insulated walls and insulated frame.
 - Hot air is circulated in the hot-air oven.
 - Each pipe is evacuated by a turbo-molecular pump (0.3 m³/sec) during the baking.

Short type

unit

Baking 2: Baking conditions

Baking conditions

- Temperature : ~150 °C (~120 °C for beam pipes with electrodes)
- Baking period : ~26 hours
 - It was confirmed that the temperature of the beam pipes in the oven became $\sim 150\,^{\circ}\text{C}$ within a several hours if the temperature setting of the hot-air circulator was $\sim 175\,^{\circ}\text{C}$.
- Targeted pressure after baking : < 10⁻⁷ Pa
- NEG pump is activated at the same time.

Before baking

- TiN coating (if necessary)
- Installation of NEG pumps and BPM electrodes at Oho clean room.

After baking

- Filling with dry nitrogen up to atmospheric pressure.
- Isolating the beam pipe and putting a blank flange on the beam pipe.
- Keeping the beam pipe in the storage area until the installation.

Clean room

Storage area (Oho lab.)

Baking 3: Rate of baking output

- Baking work started on last April.
 - Baking work started on small scale with 2 baking equipments on last April.
 - On last September large-scale works with 4 baking equipments started.
- Total output by last month (2013/2/28) is 481.
 - Averaged daily output: 0.8 (small-scale), 2.0 (full-scale), 1.4 (total)
 - Averaged weekly output: 5.5 (small-scale), 13.9 (full-scale), 10.0 (total)

2013/3/4

Baking 4: Achieved pressure after baking

- For almost all beam pipes, achieved pressures after baking are below 1×10^{-7} Pa.
 - If achieved pressure is higher than 1×10^{-7} Pa, the beam pipe is baked again. (only 3 cases so far)
 - Mass pattern after baking is not monitored. (Although 2 of 4 baking equipment have RGAs, we don't use them.)

TiN coating 1: Coting method

- For SuperKEKB LER, it is an important issue to mitigate the electron cloud instability.
 - In order to reduce the electron cloud, inner surfaces of almost all LER beam pipes are coated with TiN (except beam pipes with clearing electrodes).
 - TiN coating tests had been performed and the coating method was established.
- TiN coating is done by a DC magnetron sputtering of Ti in Ar and N₂ atmospheres.
 - A Ti cathode rod (-400 V) is set on the center axis of beam pipe (hung from the top on in case of the vertical type).
 - Gases are supplied into the beam pipes uniformly though the Ti rod.
 - Magnetic field (16 mT) is supplied by solenoid coils.
 - Preliminary experiments were performed at a test stand to decide the coating parameters.
 - Thickness of TiN coating : 200 nm (at least)
 - Straight beam pipes are coated by vertical type and bent pipes are coated by horizontal type.

TiN coating 2: Facility (vertical)

- 5 vertical equipments for straight beam pipes were built last year.
 - Large-scale work started on last September with 4 vertical equipments.
 - 1 equipment is backup and not available now.
 - Beam pipe with a length up to 5.5 m can be coated.
 - Short beam pipes and dummy pipes are connected to make total length ~6 m.
 - Two lines of the beam pipes can be mounted side-by-side in one equipment.
 - Combination of hot-air oven and circulators are adopted for pre-baking.
 - It is not available for bent beam pipes.

TiN coating 3: View from bottom and middle floor

Viewing port and camera at the bottom to observe discharge

Bottom floor

Middle floor

View from top floor

TiN coating 5: Working process

- Before coating (at Oho clean room)
 - Visual check on the beam pipe.
 - Putting blank flanges on pumping ports and BPM ports.
 - Connecting beam pipes and dummy pipes for length tuning. (if necessary)
 - Leakage test
 - Installation of beam pipes on coating equipment.
- In coating equipment
 - Leakage test
 - Pre-baking (~150 °C, ~24 hours)
 - TiN coating (Discharge duration : ~80 min.)
- After coating
 - Filling with dry nitrogen up to atmospheric pressure.
 - Dismantling beam pipes
 - Installation of NEG pumps and BPM electrodes at Oho clean room.
 - Baking

Leakage test before installation

TiN coating 6: Installation of beam pipes 1

Hinge assembly to get beam pipe upright

Beam pipes are transported and installed on the coating equipment by crane.

TiN coating 7: Installation of beam pipes 2

• Beam pipes are transported and installed in the coating equipment by crane.

TiN coating 8: Installation of beam pipes 3

Ti cathode rod (~6m) is also installed by crane.

TiN coating 9: Coating 1

- Introduced gases : Ar (~2.2 Pa), N2 (~1.8 Pa)
- Discharged current: 6.3 A
- Required time: 5 min (Ti coating for base of TiN) + 75 min (TiN coating)

View from viewport at the bottom

TiN coating 10: Coating 2

Electron microscopic image of TiN coating

Cu beam pipe coated with TiN

TiN coating 11: Performance evaluation

- SEY of Al samples coated with TiN at this facility were measured.
 - It was confirmed that SEY of TiN coating drops to below 0.8 after electron irradiation (incident electron energy: 250 eV)

 It was also confirmed that the cylindrical cathode rod is available for grooved surface adopted in bent pipes.

TiN coating 12: Rate of coating output

- Coating work started on last July.
 - Coating work started on small scale with 1 coating equipment on last July.
 - On last September large-scale works with 4 coating equipments started.
- Total output by last month (2013/2/28) is 411.
 - Averaged daily output: 1.0(small-scale), 1.9 (full-scale), 1.7 (total)
 - Averaged weekly output: 6.9 (small-scale), 13.6 (full-scale), 11.8 (total)

TiN coating 13: Horizontal type 1

 Horizontal coating equipments for bent beam pipes are in preparation now.

TiN coating 14: Horizontal type 2

- Discharge test will be done this month
- Large-scale work with 2 equipment will start on April.

Installation test of Ti cathode rod in bent pipe

- We had some troubles especially in the early stage.
 - Deformation (1 Cu pipe) and cracks (3 Al pipes) of pipes at welding lines.
 - Caused by stress mainly added during crane works.
 - Change in our assembly and handling processes to decrease stress.
 - Damaged beam pipes will be repaired.
 - Vacuum leak at a welding line between connection flange and pipe
 - Repaired by extra welding
 - Interruption of baking due to shutdown of pumps cased by earthquake or electrical outage.
 - Returning to the starting point of baking.
 - Melting of NEG pump (GP50) during activation
 - Change in power feeding method.
 - Abnormal discharge during TiN coating.
 - Caused by insulation failure.
 - Removal of coating from insulator.
 - Difficulty reducing residual H₂O in coating equipment.
 - Removal of dust on the bottom of coating equipment.
- We have a lot less trouble recently.
 - MO flange (Al) has the quality to last long and we had no problem with it after coating and baking so far.

Crack at welding line

Melted NEG pump

Euture plan

- Apr. 2013 \sim Dec. 2013 : \sim 390 beam pipes for LER and HER
- Jan. 2014 \sim Mar. 2014 : \sim 80 beam pipes for Damping ring
- April 2014 ~ Dec. 2014 : ~250 beam pipes for LER, HER and Damping ring

2013/4/1

2013/5/1 2013/6/1 2013/7/1 2013/8/1

2013/3/1

Total output (baking)

2012/4/1

2012/6/1

2012/10/1 2012/11/1 2012/12/1

2013/1/1 2013/2/1

2012/8/1

2013/10/1

2013/11/1 2013/12/1 2014/1/1 2014/2/1

2013/9/1

2014/4/17

2014/3/1

2014/7/1 2014/8/1

2014/9/1

2014/10/1

2014/11/1

2014/12/1 2015/1/1 2015/2/1

2014/6/1

Summary

- Pre-installation works (coating and baking) started on last April.
 - Large-scale works by 10 workers with 4 vertical coating equipments and 4 baking equipments started on last September.
 - So far 411 beam pipes were coated and 481 beam pipes were baked.
 - Though we had some troubles at the early stage, we have a lot less trouble recently and we are on schedule.
- Horizontal coating facility will be operated on large scale from next month.
 - Coating test will be performed this month.
- During next fiscal year (April 2013 March 2014), ~470 beam pipes will be treated.

