

Optics Issues

Hiroshi Sugimoto for Optics Group

Contents

- 1. Optics Design Issues Except for IR
 - Tsukuba straight line, nominal tune, Beast optics, etc.
 - Tunnel subsidence effect on vertical emittance
- 2. IR Optics Design
 - Design changes
 - Dynamic aperture and Touschek lifetime
- 3. Error Field from Final Focusing Magnets (QCS)
 - Normal sextuple error field
 - Skew sextuple error field
 - Possible design change plan

Optics Design Issues Except for IR

Machine Parameters

Change LER vertical tune from 44.57 to 44.57

	LER	HER	
Energy (GeV)	4.0	7.00729	
Current (A)	3.6	2.6	
#of bunches	2500	2500	
${eta_x}^{\star}$ (mm)	32	25	
${oldsymbol{eta}_y}^{\star}$ (mm)	0.27	0.30	
\mathbf{E}_{x}^{*} (nm)	3.2	4.6	
${\epsilon_y}^*$ (pm)	8.64	11.5	
$\sigma_{\!z}^{*}$ (mm)	6	5	
v_x , v_y	44.53 , <mark>46.57</mark>	45.53 , 43.57	
$\mathcal{V}_{_S}$	-0.0247	-0.0280	
ξ _y	0.0881	0.0807	
Luminosity (10 ³⁴ cm ⁻² s ⁻¹)	8x10 ³⁵		

LER Optics Changes - Wiggler Section -

- Vertical beta is suppressed to mitigate the beam-gas scattering effects.
- Integer part is increased by 2 while keeping the fractional part.

Tsukuba Straight Line is Finalized

Interference problem between LER&HER has been resolved while keeping optics, orbit length and IP geometry.

Off 4S Operation

- Capability of off-4S operation is confirmed considering limitation of magnet field strength.
- Optics and hardware design is carried so that keep the capability.

	Есм (GeV)	ΔЕ/Есм (4S)	LER (GeV)	HER (GeV)
15	9.46030	-10.58 %	3.577	6.266
2S	10.02326	-5.25 %	3.790	6.638
35	10.35520	-2.12 %	3.915	6.852
4S	10.57940	-	4.000	7.007
5S	10.87600	+2.80 %	4.112	7.204
<u>6</u> S	11.01900	+4.16 %	4.166	7.298

Phase 1 - Linear Optics -

- Optics W/O QCS and solenoid has been designed
- QCS and solenoid is replaced by drift space.
- Machine tuning except for IR is expected to be done in this phase.

Phase 1 - Dynamic Aperture -

- DA example assuming,
 - Design bunch current.
 - 2% emittance ratio.
- Beam loss estimation is ongoing from view point of radiation protection.

Simulation of Tunnel Subsidence

- The subsidence effect is investigated with numerical simulation.
- Put the subsidence to design lattice as a vertical misalignment of each magnet.

Change amplitude of misalignment, and evaluate vertical emittance.

Simulation of Tunnel Subsidence (cont'd)

 Vertical emittance exceeds the target values, 5pm, after 7 years when 2mm/year is assumed.

Simulation of Tunnel Subsidence (cont'd)

- V-LCC misalignment has very critical impact on emittance.
- Need special care for orbit control or/and alignment in this region.

IR Optics Design

IR Design

- All quadrupoles except for QC1P have iron yoke for preventing field leakage to the another beam line
- Canceller coils are installed for HER beam line to suppress leakage filed from LER QC1 magnet.
- All magnets have super-conducting corrector coils.
 - Normal&Skew Dipole, Skew Quad, Octupole

IR Design Upgrade

LER QCs now have vertical offset to reduce dipole corrector strength.

Vertical Kick Angle

Magnet	QC1LP (mrad)	QC2LP (mrad)	QC1RP (mrad)	QC2RP (mrad)
Old	2.472	2.746	-2.082	2.491
New	-0.149	1.651	-0.644	1.602

Dynamic Aperture & Touschek Lifetime

- Touschek lifetime is optimized with Down-hill simplex method.
- Available knobs are 54 sextupole families and 4 octupole magnets.
- Lifetime of both beams is almost reached the target value, 600 sec.

Error Field from QCS

Field Measurements of QCS Prototype

Unexpected normal&skew sextupole have been observed.

```
→ Ohuchi -san's talk
```

Their magnetic field strength is ~0.1% of quadrupole field.

Impact on dynamic aperture has been investigated.

LER DA with Normal Sextupole Error Field

- Thin lens Sextupoles are inserted to QC1L and QC1R.
- There magnitudes are same, but signs are independent.
- Evaluate DA for 4 possible combinations of sign at each error field strength.

Sextupole Corrector Coil

- Only R-size design can be changed. (L-size is already fixed)
- No more space for installing the corrector to QCS itself.
- We are considering installation between QC1R and QC2R.

DA Improvement by Corrector Coil

- Introduce sextupole error to ALL QCs.
- Check whether we can mitigate DA degradation by optimizing the corrector strength.

DA degradation is improved, but B3/B2 < 0.1% is preferable.</p>

Skew Sextupole Error Field

- Analogous calculation for skew sextupole error field.
- Different feature compared to the normal sextupole case.
- DA Improvement is not enough level.

Lifetime and Corrector Coil Position

- DA survey with changing corrector position.
- Only QC1RP has skew sextupole error.

Corrector coil must be installed between QC1L & QC1R

Design Change Strategy

Points to be considered.

- Need 1 normal sextupole corrector.
- Need 2 skew sext. correctors.
- One of skew sext. must be installed to QC1R.
- Each QC can have only one corrector coil
- Possible to install additional coil between QC1R and QC2R.

R-side Design Change Plan (Not Fixed Yet)

Possible Plan

- Install normal Sext. coil (+octupole) to between QC1 and QC2.
- Install skew Sext. coil to both QC1 and QC2 instead of octupoles.

DA W/ and W/O R-side Octupoles

Touschek lifetime estimated by DA seems OK.

Side Effect of Removing Octupole from QC1

<u>HER</u>

No remarkable effect is observed so far.

<u>LER</u>

FMA indicates enhancement of some ronances.

The 18th KEKB Accelerator Review Committee

Summary

- 1. Optics Design and Issues (Except for IR)
 - Almost completed.
 - Minor changes related to detailed hardware design is now continued.
 - Need special cares for orbit control or/and alignment in V-LCC region.
- 2. IR Design
 - Vertical offset is adopted to LER-QCS

for saving dipole corrector strength.

- Lifetime of both beams is almost reached the target value, 600 sec.
- 3. Error Field from QCS
 - Nomal&Skew sextuple error field has critical effects on DA.
 - Additional corrector coil is planned to install.

Thank you for listening!

Appendix

Touschek-Lifetime History

 DA has been steadily improved by feedback cycle between Optics & Magnet group.

