Positron Source Upgrade

KEKB injector linac Takuya Kamitani

SuperKEKB Injector

SuperKEKB positron source

target offset & beam hole

- injection e- beam : on axis to preserve low emittance
- primary e- beam : 2.7 mm off axis (target offset 3.5 mm, FC offset 2.0mm)

e+ yield degradation by target offset

e+ yield degrades ~50 %
 by offset e+ generation

1

- it can be improved to 78 % by
 - utilizing transverse kick by proper orientation of FC slit
 - e- incident position optimization

beam spoiler

- **beam spoiler** to enlarge beam spot on target to be $\sigma_x, \sigma_y > 0.7$ mm to avoid target destruction
- spot size monitoring screen Al₂O₃ (0.14 mm thick)
 + scattering Al foil (0.25 mm thick) [total material thickness = 0.05 X₀]

FC Test-stand at KLY gallery

FC test stand fire accident

- fire accident during operation test on 2013/12/21, 22
- power cable burned at the connection to snubber circuit
- improved cable connection and new snubber circuit under fabrication
- restart test operation in April 2014 beam line installation in May 2014

Positron Capture Section

- LAS with SLEDs for sufficient field gradient
- breakdown issue of LAS in solenoid field
- needs careful RF conditioning

unit 1-5 RF conditioning history

1-5 unit RF conditioning

in solenoid field

unit 1-6 RF conditioning history

1-6 unit RF conditioning

in solenoid field

unit 1-7 RF conditioning history

in FODO quads

RF conditioning

1-7 unit

construction photo (1)

LAS structures and solenoids are carefully installed in the positron capture section units 1-5, 1-6.

construction photo (2)

construction photo (3)

quads around the acc. structures for short interval

quads and steerings interleaved

e+ beam optics after DR

- in sector 3, 4, 5 after DR,
 pulse quads & steerings will be used for e-, e+ mode dependent flexible optics design
- triplet/doublet/FODO designs are compared for magnet spec. determination
 - FODO: best
 - doublet: better
 - triplet: NG
- from emittance growth issue, triplet/doublet are preferred because of smaller beta-function (see next slide!)
- finally doublet is chosen

e+ emittance growth

- emittance growth for FODO is significantly larger
- average beta-functions are β_{x,y} ~16 m for doublet/triplet β_{x,y} ~36 m for FODO (see previous slide!)
- small beta-function is essential to suppress emittance growth

e+/e- compatible optics

- e- emittance growth in this region should be worried
- design consideration started for additional pulse quads

schedule

Summary

- 1) e+ beam-line construction started last summer and to be almost completed in April 2014
- 2) target & spoiler to be installed in May 2014
- 3) FC power cable system reconstruction in progress after the fire accident test operation at KLY gallery in Apr/May 2014 installation in tunnel in May 2014
- 4) LAS structures (in capture section units and one FODO unit) in RF conditioning
- 5) pulse quads and steering in preparation for Sector-3, 4, 5 in doublets system for emittance growth suppression (installation ~ 2015 summer ? depending on budget situation)
- 6) additional pulse quads considered in Sector-1, 2
- 7) we will start e+ commissioning in June 2014 (with constraint of half FC current and half DC solenoid current)