

IP Chamber Ver. 1

7th Belle PAC 10 -11 March 2013

K. Kanazawa for IR Technical Meeting Member IR Installation Meeting Member SVD/IR Mechanics Meeting Member

Introduction

The design and fabrication of the IP chamber has been proceeding through step-by-step technical tests, with reference to back ground simulation, and with the evaluation of beam-induced phenomena.

Recently the final design for the version 1 chamber (for BEAST II or Phase 2) was proposed.

The following explain the design features.

On Synchrotron Radiation

Ridges: to keep the direction of scattered photons away from Be

the last bend. At present, simulation shows no serious scattered photons from this part.

avoid the direct hit of SR from

 e^+

On Beam Induced Electro-magnetic Field (or HOM)

On Heat load

On Fabrication

R&D

Fabrication issue

- Cleared
 - Stress analysis
 - For the temperature difference between the two tubes at the center.
 - Changing support position of beam pipe
 - Fabrication test
 - Precise machining of Be pipes
 - NC machining of ridges
 - Be-Ti brazing
 - Ti-Ta HIP
 - EBW near by HIP
 - Pulsed sputter coating of Cu inside 2 cm Al pipe and its uniformity check
- To be done (in preparation)
 - Stress analysis
 - Check the strength under dynamic force
 - Fabrication test
 - Au coating on Ti pipe
 - Effect of EBW on the coating
 - Simulation welding between inner and outer Ti pipe

Scientific issue

- Background simulation
- Understanding tip-scattering of photon on a ridge

Cu Sputter Coating Test (S. Tanaka)

Tip-scattering on a ridge (T. Ishibashi et al)

~0.14 mm (due to scattering on air)

Half of photons hit the ridge and the other half pass over.

- •CHESS (Cornell Univ.) G2 beam line
- •Photon energy : 9 keV
- •Slit : 2 mm (H) by 0.05 mm (V)

•Detector angular resolution : 0.2 ° (FWHM)

Tip-scattering on a ridge

- •The slope of the taper inside the pipe is 1.23 °.
- The number of tipscattered photons that enter the central part is less than $\sim 10^{-7}$ of those hit the ridge.
- •Assuming the shape of the ridge, we will be able to estimate the actual number.

Ratio of the scattered photon.

Ver. 1 Beam Pipe Production Schedule (S. Tanaka)

	Start	End	2012. 11	12	2013. 1	2	3	4	5	6	7	8	9	10	11	12	
Cupper plating test (for IP inner tube) (Done)	2012. 9	2012. 12									Yellow: Test						
Tantalum and titanium part connection and cutting test (Done)	2012. 1	2012. 12									Blue: Central chamber Green : Crotch part						
Crotch part machining (forward)	2013. 4	2013. 7															
Crotch part machining (backward)	2013. 4	2013. 7															
Tooling production for connection of IP chamber and crotch part	2012. 12	2013. 3								5.							
IP inner chamber production	2013. 1	2013. 3							→ 1	The out	er tube y	vas alre	eady fab	ricated			
Gold plating of inner tube	2013. 4	2013. 4													_		
connection of IP chamber inner and outer tube (EBW for Ti-Ti)	2013. 5	2013. 8															
Thermal stress test with EBW and brazing	2012. 11	2013. 3															
Crotch part connection (EBW or brazing)	2013. 8	2013. 10															
connection of IP chamber and crotch part	2013. 10	2013. 12															

Concluding remark

- The design of the first IP chamber for Phase 2 commissioning is almost completed.
- The total fabrication time will be about 1.5 year, since it contains many step-by-step fabrication tests.
- The second version can be completed within much shorter period.
- It will be quite fruitful if we can have a feedback from the experiences during Phase 2 run before completing the production of the second version.