Status of LLRF System

~ KEKB LLRF Team ~

T. Kobayashi, K. Akai, K. Ebihara,

A. Kabe, K. Nakanishi, M. Nishiwaki, J. Odagiri

Outline

- 1. Overview & Status
- 2. Klystron Phase Lock Loop (KLY-PLL)
- 3. Response (Frequency) Property of FB control
- 4. Bunch Gap Transient Effect
- 5. Schedule & Summary

Given comments in the report of last KEKB ARC

1. What happens if the LLRF system doesn't boot up orload the FPGA properly, or some software process hangs up? (Interlocks should be very robust and not a software function).

2. Dynamic responses of the closed loop system? (information in the frequency domain?)

3. Bunch gap transient effects? Is the shift of the IP (the difference between the HER and LER) acceptably small?

New LLRF System for SuperKEKB

Preset analog systems will be replaced by new digital ones step-by-step.

• Klystrons (LLRF) : Cavity unit = 1 : 1 (SuperKEKB)

Block Diagram of FB&Tuner Control

RF System Arrangement for Phase-I

In the beginning, New LLRF systems will be applied to 9 stations at D4&D5

- Now the mass production of 8 systems is in progress as scheduled. And the prototype model (β-version) is also used for the operation at D4. They will be installed in March at D5 and in June at D4.
- The other stations are still driven by existing analogue systems.
- The DR-LLRF system will be produced next JFY. It is almost the same as MR one, except 3-cavity vectorsum control is needed.

Reliability of FPGA for Inter Lock

Given comment

What happens if the LLRF system doesn't boot up or load the FPGA properly, or some software process hangs up? (Interlocks should be very robust and not a software function).

Our viewpoint

FPGA is generally regarded as the same as hardware system, so it is very reliable.

It has accomplished solid performance in many fields.

It is hard to expect simultaneous hang-up of all FPGAs.

All boards have some I/L function (multiplexed). Any FPGA (or PLC) might detect some abnormal.

Reported '13 Klystron Phase Change due to Anode Voltage Control

For efficiency optimization, the anode voltage is controlled depending on klystron input power to reduce the collector loss.

The kly. output phase shifts largely in response to input/ output power.

This phase change is unexpectedly-large.

The loop phase shift of 80 deg. will be critical problem for I/Q FB control technique.

(Acceptable phase change is about +/-60 deg.)

Implementation of Klystron PLL in FPGA

Required loop bandwidth : <1kHz (The anode voltage response : about 1Hz.)

KLY-PLL Test Result with ARES-FB Control

Cavity-FB & KLY-PLL acting together

High-power test with klystron is not yet done.

in 100-W Driving

Response Property - Klystron Bandwidth (open loop)

Response Property

Bode Plot of Closed Loop for ARES

Disturbance Rejection Characteristics in the closed loop

Disturbance Rejection Property for Beam

Simulation of Phase Modulation due to Bunch Gap (LER)

Time-domain simulation of ARES (LER) for bunch gap transient

Including 3-cav. structure of the ARES

I_b=3.6 A (ultimate stage)

Cavity Param.

 $\begin{array}{l} \beta: 5 \;, \; Q_L: \; 18000 \quad (Q_s=1.6x10^5, \; Q_c=50, \; Q_a=2.5x10^4) \\ P_c: \; 140 \; kW \;, \; P_b: \; 460 \; kW \\ \Phi_{acc}: \; 74.5 \; deg. \\ A\text{-cav detuning: -280 kHz} \end{array}$

FB Param.

 $\begin{array}{l} P_{gain}: \ 20 \ (P_{actual}=2.5) \\ I_{gain}: \ 80 \ (I_{actual}=2x10^5) \\ Loop \ delay: \ 2 \ us \end{array}$

KLY band : 100 kHz

KLY-BW is ~100kHz

Simulation of

Phase Modulation due to Bunch Gap (HER)

Gap 2%

Time-domain simulation of SCC & ARES for HER bunch gap transient

HER : I_b=2.6 A (ultimate stage)

Estimation of Relative Phase Shift@IP between HER & LER due to 2%-bunch gap in the ultimate stage

Schedule of Production and Installation

*based on the original schedule for the operation.

	JF	JFY2013 JFY2014															JFY2015																	
	4	5	6	7	8	3 9	10	11	12	1	2	3	4	<u>ا</u> ا	5 (6	7	8	9	10	11	12	1	2	2 3	4	5	6	5 7	' 8	9	10	11	12
Acc. Operation																																		
_			Beam Operation																															
																											DR	Bea	am C	pera	atior	Ì		
																-																		
MR LLRF System					_			<u> </u>							_	_																		
	<u></u>		4:4. /	Dree				00									_							-					_					
	Qu	an		Pro	σαι			In	stal	tem Ilati	is) ion	0	D5		0	Π4																		
					-	+					Ca	blir	ng		Ce l																			
						+	-							Sy	sten	n C	alib	orati	ion	& O	p. Te	est		-										
																					RF	Con	diti	onin	g									
Damping Ring LLRF																																		
									De	sig	nin	g																						
													Pro	duc	tior	1																		
						_										_						Ins	talla											
						_									_	_							Са	bling	3									
					-	_		-								_	_							Sys	stem	n Calibration & Op. lest								
					-											_								-		RF	Cor	alti	onin	g				
Reference Distribution	on					1																												
Opt. Transceiver Sys	ten	ר ה (C	pti	cal	De	elay	Co	ntr	olle	r, E	/0,	0/I	É et	c)																				
	Pro	odu	icti	on																														
										Ins	tall	lati	on a	&Tur	ning																			
Optical Cables			Ins	stal	lati	ion	of (Opt.	Ca	ble	S																							

- Mass production of 8 systems is now in progress for D4&D5, and will be installed on March and June in this year.
- RF conditioning is scheduled in November & December JFY2014.
- DR-LLRF designing has been completed, and the production will be JFY2014.

Summary

- •Now the mass production of new LLRF system is in progress on schedule. They will be applied at D4 and D5 sections.
- Newly klystron phase lock loop was implemented in the FPGA, and successfully worked. But high power test is not yet.
- RF phase modulation due to the bunch gap transient was estimated. The relative phase shift between both rings at IP is expected to be acceptably small. However, large-phase displacement appears at the leading part of the bunch train.

• DR-LLRF system will be produced next JFY.

Thank you for your attention !

Followed by Backup Slides

SB Phase Noise of ARES under FB control.

P20, 180

Agilent E5052B Signal Source Analyzer

RF Reference Distribution

Features

- Optical distribution by means of "Star" configuration from the central control room (CCR).
- "Phase Stabilized Optical Fiber (PSOF)", which has small thermal coefficient, is adapted : < 1ppm/°C (5 ps/km//°C)
- Furthermore, optical delay control of thermal drift compensation is applied at CCR for all transfer lines.
- The optical transceivers (E/O and O/E) are the same as J-PARC Linac; They have practical accomplishment of seven-year operation, quite low jitter and high thermal stability with Pertie device.

Status

- Installation of the PSOF cables to all RF sections and Tsukuba-B3 was completed.
- Optical transceivers and the drift compensation system will be install in this month.
- Connection into the electronics hut of the Belle-II and extension to the DR will be done this year (next JFY).

KEKB-LLRF System

The -1 mode feedback

In the KEKB Operation

- Beam current was limited due to the -1 mode instability at 1 A in LER and 1.2 A in HER, much lower current than expected.
- The -1 mode digital feedback selectively reduces impedance at the driving frequency.
- After the -1 mode feedback was installed, the beam current could be successfully increased.

