

Development of Pulse Magnets for Injection and Abort Systems

T. Mori (KEK) SuperKEKB Review Mar. 4, 2014

Construction Schedule

• Phase 1

- The new HER injection/abort system is installed
 - This is urgent issue & main topic of this talk
- The KEKB LER injection/abort system is preserved
 - DR is not ready at the beginning of Phase 1
 - Emittance is large; new LER system doesn't work well for Phase 1
 - The LER current must be low to protect the abort window (< 500mA)
- Phase 2
 - The new LER injection/abort system is installed
 - DR is ON
 - New LER chambers have smaller apertures than those of KEKB
 - They should be installed at the same time not to make cavity structures
 - New injection channel can't be used for large emittance beam of Phase 1

List of BT Pulsed Magnets

	MR-BT				DR-BT		
	Injection	ı	Abort		Injection	Extraction	
	HER	LER	HER	LER			
H-kicker	6(3+3)	6(3+3)	4	1	2(1+1)	1	
V-kicker	-	-	1	1	-	-	
Septum	4	2	-	-	1	1	
Quad	-	-	-	2	-	-	

- 5 horizontal kickers for HER abort considered
 - Pulse uniformity problem (shown in later slides)

MR INJECTION

Method & Parameters

- 2 candidates for HER
 - Baseline: betatron injection; same as KEKB
 - Backup: synchrotron injection
- Injection system:
 - 2 kicker systems to make injection bump (π phase advance)
 - Kicker pulse: 2μs
 - kicker pulse height fluctuation affecting the height of the bump: 1mm
 - Effective septum width: 3.5mm (KEKB: 5mm)
 - Including non-uniform field region
 - Totally 4.5mm gap required by hardware
- Injection parameters are determined according to ring & Linac parameters

 $a_{_{\chi}R}$ [m]

1.2

0.8

0.6

0.4

0.2

0

Parameters for Betatron Injection

• Required ring aperture for beam($2.5\sigma_{xI}$) injection is calculated as function of β_{xI}

 $\beta_{xI} = 15.3 \,[\text{m}]$

 $\beta_{\chi R} = 80 \text{ [m]}$

50

60

 $\beta_{xR} = 100 \,|\, \text{m}$

70

80

90

100 β_{×1} [m]

	Ring paramete			
	Parameter	\	/alue	
perture	α_{xR}			7.93
;e	β_{xR}		10	oom
	$\mathcal{E}_{\mathcal{X}R}$		4.6×10	⁻⁹ m
	$\mathcal{E}_{\chi I}$		1.46×10^{-1}	⁻⁹ m
	Injection parar	net	<u>ers</u>	
	Parameter	Va	lue	<i>(</i>)
	Δx		7.8mm	
	$\Delta x'$	-0	.62mrad	
		/	1//	

6

Development of Pulse Magnets for Injection and Abort Systems, T. Mori, MAC2014

Betatron Injection Orbit

[표] 0 ×	Center of beam	duct	Injection param.	Value
-0.01			Kicker height	28.5mm
-0.02	Stored beam orbit	<	Slope angle	-1.88mrad
-0.03			<i>K</i> ₁ (QI4E)	0.1498
0.04	Septum	Duct inner wall	Height at QI4E	29.5mm
-0.04			$3\sigma_{xR}$	2.0MM
-0.05	1	Partition wall of	Δx	7.8mm
-0.06	Injected beam orbit	inj. channel BPM	$\Delta x'$	-0.62mrad
-0.07		(2mm ^t assumed)	$2.5\sigma_{xI}$	0.37mm
-	-2 -1 0 1 2 3	4 5 6 z[m]		

• We plan to install BPM on injection channel

• Increase of K_1 (QI4E) increases the risk of wall hit

Betatron injection orbit can be designed with current HER optics & hardware designable

Synchrotron injection orbit also designed; almost same as betatron injection

Septum Magnet Prototype

Magnet

	HER	LER
Septum conductor width	1mm	
Effective septum width	3.5mm	
Gap	8mm	
Core length	1m 790m	

Pickup coil

0.5mm Si-steel sheet

Development of Pulse Magnets for Injection and Abort Systems, T. Mori, MAC2014

Field Measurement

- Field profile with SUS430 duct is fine
 - Leakage field sufficiently suppressed
 - Necessary and sufficient design
- Simulation study for shim shape on going

Development of Pulse Magnets for Injection and Abort Systems, T. Mori, MAC2014

- Upgrade for SuperKEKB
 - Thyristor → Inverter (IGBT)
 - Transistor → De-Qing unit
 - Controlled charge timing; double trigger driven
 - High precision auxiliary charger introduced
 - Current R&D issue
 - Pulse stability is not perfect:
 - fluctuation > 1 × 10⁻³ seen in beginning 1-2 seconds
 - De-Qing drift?

Development of Pulse Magnets for Injection and Abort Systems, T. Mori, MAC2014

Kickers for MR Injection

Magnets and power supplies will be reused

ssues

- Thyratrons (1 thyratron/kicker)
 - KEKB type(EEV CX1154C) is expected to be exchanged every year with 25Hz injection
 Long lifetime type(EEV CX1826A) (is already installed in HER for test)
 - - 6-year achieved in KEKB, CX1154C lifetime in KEKB: 3-year with 5 10Hz continuous inj.
 - Demerit: price $\times 2$
 - Another candidates
 - Replaced by semiconductor device (Si thyristor, solid state thyratron, etc?)
 - Pulse compression circuit (Rise time $5\mu s \rightarrow 1\mu s$) (Standard thylistors + saturable inductance)
- Beam chambers
 - No upgrade planned for Phase 1
 - HER
 - Heat generation on fringe part is possible \rightarrow Cu or Cu-coated kovar fringe is considered
 - LER
 - 3 chambers are planned to be exchanged for Phase 2
 - Waveform shaping circuit
 - Radiation tolerance unknown
 - Placed under the kicker magnet

Spec. of MR injection kickers

Туре	Window frame
Core	Ferrite
Max voltage	32kV
Max current	2kA
Pulse shape	Half sine
Pulse width	~2µs

T. Mimashi

MR ABORT

Abort Kickers

- Magnet
 - Newly designed & constructed
- Ceramic beam camber
 - HER
 - Single ceramic (hollow type ceramic for water channel)
 - Sleeve: kovar + 100μm Cu coat
 - Problem: Ti wire evaporation coating failed
 → Sputtering system constructed for 5µm Ti coat
 - LER
 - Double ceramic tube
 - Sleeve: Cu
 - Problem: many vacuum leaks during fabrication
 → Sleeve structure changed
 - Entire Ti coated inner wall surface
 - Selected by the achievement on KEKB
 - Stripped coat with high current beam is not trivial
- Power supply
 - Pulse shaping issue
 - Radiation hardness of pulse transformer

Kicker Magnet Construction

T. Mimashi

Ceramic Chamber

T. Mimashi

	HER	LER
КЕКВ	0.29kW	0.56kW
SuperKEKB	1.8kW	2.7kW

No local heating observed

Development of Pulse Magnets for Injection and Abort Systems, T. Mori, MAC2014

Sputtering System

- Parameter tuning
 - Current rate 60hours/chamber
 - B = 160Gauss
 - $V \cong 300V$
 - *I* = 300mA

Development of Pulse Magnets for Injection and Abort Systems, T. Mori, MAC2014

Power Supply Circuit

Issue

- Radiation hardness problem
 - → 200mm polyethylene for neutron reduction
 - ➔ 7mm Pb shield

Development of Pulse Magnets for Injection and Abort Systems, T. Mori, MAC2014

Output Current of Power Supply

Inductance 4.5µH/165Ω+940pF Voltage 39.3kV (W/ additional inductance)

Peak 1750Ap(103%) Flat 1700A(100%) Rise time (2%-90%): 150ns → Sufficient (500A/div,5µs/div)

10µs-flat: 8.8% Drop (it is not fatal)
→ 1 - 2mm shift on abort window
→ Target: <5%

DR INJECTION & EXTRACTION

Development of Pulse Magnets for Injection and Abort Systems, T. Mori, MAC2014

DR Injection & Extraction Arrangements

Development of Pulse Magnets for Injection and Abort Systems, T. Mori, MAC2014

DR Injection & Extraction Septa

	Injection	Extraction
Deflection angle (mrad)	80	103
No. of magnet	1	1
Field strength (T)	0.36	0.47
Туре	Eddy-current	Eddy-current
Aperture (mm)	70(H)x24(V)	98(H)x30(V)
Core length (mm)	800	800
Coil turns	1	2
Septum thickness (mm)	2.5	2.5
Waveform	Full-sine	Full-sine
Pulse width (μs)	300	300
Peak Current (A)	8000	5700
Max repetition rate (Hz)	50	50
Stability	<1E-3	<1E-4
	In-vacuum	Out-vacuum w/ ceramic duct

- RF system near Ext. septum requires pressure < 10^{−7}Pa → Out vacuum septum for extraction
- Power supplies are same type as MR septa

M. Tawada

Summary of Remaining R&D Issues

MR injection

- Septum
 - Stability of power supply
 - Shim shape study
- Kicker
 - Thyratron lifetime issue: long life type is planned to be used
 - Radiation tolerance for pulse shaping circuit
- MR abort
 - Ceramic chamber: Ti sputtering
 - Power supply: pulse shaping & radiation hardness
- DR injection/extraction
 - Septum
 - Design
 - Kicker
 - Power supply R&D

Thank you for your attention.

BACKUP

MR INJECTION

Need for synchrotron injection

- Very low survival rate with betatron injection into HER is expected
 - If offset Δx from IP for betatron oscillation,
 - Kicked vertically by beam-beam force from the colliding beam

Synchrotron oscillation \Rightarrow no offset Δx ($\because \eta^* = 0$) Synchrotron injection (as a backup option of betatron inj.)

Development of Pulse Magnets for Injection and Abort Systems, T. Mori, MAC2014 Mar. 4, 2014

Dispersion & Momentum spread

- Dispersion by matching
 - $\eta = -1.6$ [m] • $\varepsilon_x = 4.6$ [nm]

Injection point

- Momentum spread
 - $\sigma_{\delta \mathrm{I}} = 0.1 \, [\%]$ is assumed

Development of Pulse Magnets for Injection and Abort Systems, T. Mori, MAC2014 Mar. 4, 2014

Development of Pulse Magnets for Injection and Abort Systems, T. Mori, MAC2014

Synchrotron injection orbit

Almost same as betatron injection case, only slightly tighter

Synchrotron injection orbit can also be designed

Value

29mm

0.1437

30mm

1.5mm

7.2mm

-0.52mrad

-1.89mrad

Acceptance for Synchrotron Injection

 \star Synchrotron injection is intended to avoid stored beam blow up by injection beam

- $w_{eff} \sim 5[mm]$ (KEKB) SuperKEKB parameters
- $\beta_R = 60[m]$
- $\varepsilon_R = 4.6[\text{nm}]$
- $\sigma_{\delta R} = 0.059[\%]$
- $n_R = 3.0$
- $\beta_I = 20[m]$
- $\varepsilon_I = 1.46 [nm]$
- $\sigma_{\delta I} = 0.1[\%]$

•
$$n_I = 2.5$$

- $\Delta X = \eta \delta_0 = n_I \sqrt{\beta_I \varepsilon_I + (\eta_I \sigma_{\delta I})^2} + w_{\text{eff}} + n_R \sqrt{\beta_R \varepsilon_R + (\eta \sigma_{\delta R})^2}$
- $\delta_0 = (p_I p_R)/p_R$
- $\delta_0 + 2\sigma_{\delta I} = 0.65[\%]$ (by Y. Ohnishi)
- $\eta = -1.6$ [m] (Achieved, so farm) ent of Pulse Magnets for Mar. 4, 2014 Injection and Abort Systems, T. Mori,

Injection Kicker magnet

(Total 12 thyratrons are used)

- KEKB continuous injection (5~10Hz)
 - > SKEKB 25Hz injection
 - KEKB: life time of thyratron (CX1154C) ->3 years
- -SuperKEKB : life time of thyratron : 1 year?

three possibilities

- (1) Use long life thyratron (CX1826A)
- (2) Replace thyratron to semiconductor device
- (SI thyristor? or commercial available Solid State Thyratron Replacement ?)

(3) Standard <u>Thyristors</u> + Saturable inductance(Pulse compress circuit) 5µsec -> 1µsec

We chose (1) Long Life thyratron for HER (CX1826A has been used for 6 years in KEKB)

MR ABORT

Abort optics with DC sextupole

- Instead of pulsed quadrupoles, a DC sextupole is used for enlarging the horizontal beam size.
- A DC sextupole is installed between the abort kickers and the abort window. The deflected beam feels an additional quadrupole kick effectively.

 Another DC sextupole is needed to make a pair of sextupoles for cancellation of the geometrical nonlinearity.
 The pair of Sextupoles is connected by I or -1 transformation.

Development of Pulse Magnets for Injection and Abort Systems, T. Mori, MAC2014

Abort system of KEKB

- Horizontal abort kickers kick the stored beam out of vacuum chamber (Rise time ~ 500ns)
 Beam is extracted through Ti window to the atmosphere before entering Lambertson magnet
- Vertical kicker sweeps beam vertically: energy deposit on Ti window is diffused
- The beam is bent downward by Lambertson and leads to Dump

Development of Pulse Magnets for Injection and Abort Systems, T. Mori, MAC2014

Abort system of SuperKEKB

KEKB

V (mm)

-10

Horizontal kicker:

fast kick to abort window Vertical kicker:

slow sweep vertically

Beam profile on abort window

X(mm)

 $\pm \sigma_x$ Tail

Power density

at

Head

maximum

turning

points !!

SuperKEKB

- Low emittance beam has higher possibility of destroying abort window than KEKB beam
- Enlarging horizontal beam size required additionally

<u>LER</u>

Horizontal kicker: fast kick to the Abort window Vertical kicker: slow sweep vertically

PULSED quadrupole:

enlarge the horizontal beam size

HER

Horizontal kicker: fast kick to the Abort window Vertical kicker: slow sweep vertically DC sextupole: enlarge the horizontal beam size

Abort fail-safe system like KEK is also designed

Schematic view of new beam profile on abort window

6µm shift

T. Mimashi

Mar. 4, 2014 Development of Pulse Magnets for Injection and Abort Systems, T. Mori, MAC2014 35 Abort Beam Optics with Betatron Injection

herfqlc5605_AbortSext_BI_20121128a2_Extracted.deck

Development of Pulse Magnets for Injection and Abort Systems, T. Mori, MAC2014

HER Optics for Betatron Injection

/users/iida/sad/skekb/injection/hen/herfqlc5605_AbortSext_20120316a2.deck

Development of Pulse Magnets for Injection and Abort Systems, T. Mori, MAC2014

Dynamic aperture

50 Case2:K2=2.777 $\tau = 600 \, [s]$ Δx/σ_x 10 15 10 $\Delta \epsilon / \sigma_{\epsilon}$ a12: 9.1177 a11: 9.3073 b11: 11.7729 b12: 12.4850 (650.880 sec) a21: 9.2195 b21: 9.2195 a22: 10.0524 b22: 9.8101 (558,416 sec)

Dynamic apertures & Touschek lifetimes are tested with insertion of a pair of sextupoles.

The life time is optimized for each sextupoles. Case1: SEXT FSXAB1 =(L =.334 K2 =0) -> 610 sec Case2: SEXT FSXAB1 =(L =.334 K2 =2.777278350689298) -> 600 sec Case3: SEXT FSXAB1 =(L =.334 K2 =4.52820764294694) -> 620 sec

No performance drop found.

herfqlc5605_AbortSext_20121128a2_Extracted.deck

Development of Pulse Magnets for Injection and Abort Systems, T. Mori, MAC2014

HER Optics for Synchrotron injection

/users/iida/sad/skekb/injection/her/herfqlc5605_20111227_AbortSext_20120316a2.deck

Protection from Coherent Oscillation

- Avoiding abort beams hit outside of abort window
 Vertical
 - Acceptance determined by vertical mask
 - Coherent oscillation amplitudes:
 - LER: 4.7×10^{-8} m
 - HER: 3.8×10^{-8} m
 - Amplitudes small enough: no protection applied
- Horizontal
 - Max. displacement at abort window calculated
 - (orbit) +3.5 σ_x + $\eta\delta$ (1%) + (coherent oscillation)
 - HER : 50mm
 - LER : 47.6mm
 - Coherent oscillation amplitudes
 - HER: $6.8 \text{ mm} (6\sigma_x)$
 - LER: 6.8 mm $(5\sigma_x)$

• 5 or $6\sigma_x$ coherent oscillation amplitudes make interlock BPM trigger abort signal

Protection from Coherent Oscillation

• Abort beam may hit outside of abort window

- Vertical oscillation
 - Vertical acceptance determined by vertical mask
 - Vertical amplitudes:
 - LER: 4.7×10^{-8} m
 - HER: 3.8×10^{-8} m
 - Amplitudes small enough: no protection
- Horizontal oscillation
 - (orbit) +3.5 σ_x + $\eta\delta$ (1%) + (coherent oscillation)
 - Max. amplitudes at abort window
 - HER : 50mm
 - Synchrotron入射: Coherent振動=6.8mm=5.7 σ x
 - Betatron入射:Coherent振動=6.8mm=6.2σx
 - LER : 47.6mm
 - Coherent振動=6.5mm= $5.4\sigma x$
 - Coherent oscillation amplitudes
 - HER: $6.8 \text{ mm} (6\sigma_x)$
 - LER: $6.5 \text{ mm} (5\sigma_x)$

• 5 – $6\sigma_x$ coherent oscillation amplitudes trigger abort signal

Power Supply

Issues

Pulse compress circuit

- We could get enough rise time (< 200nsec), but 10µsec flatness is not enough.
- Add dummy inductance to the coil
 - Flatness is improved from 14.6% -> 8.8% (or better)

Power Supply 3

	LER	HER	
Operation Current 1.4kA (4GeV) (Horizontal kicker) 1.46kA(4.16GeV)		1.26kA (7GeV) 1.55kA (8.6GeV)	
Maximum current of Power supply	1.7kA		
Current drop	8.8%		
# of kicker magnets	Horizontal 1 Vertical 1 Pulsed quad 2	Horizontal 4 Vertical 1	

Development of Pulse Magnets for Injection and Abort Systems, T. Mori, MAC2014

Output Current of Power Supply

Inductance 4.5µH/165Ω+940pF Voltage 39.3kV (W/ additional inductance)

(500A/div,500ns/div) Peak 1750Ap(103%) Flat 1700A(100%)

Rise time (2%-90%) 150ns → Sufficient Whole pulse

(500A/div,5µs/div) 10µs 8.8% Drop

Output Current

Inductance $2.2\mu H//165\Omega + 940 pF$ Voltage 37.0kV

(500A/div,500ns/div) Peak 2250Ap(110%) Flat 2050A(100%)

Rise Time(2%-90%) 150ns

Whole Pulse

(500A/div,5μs/div) 10μs Drop 14.6%

DR INJECTION/EXTRACTION

Kickers for DR Injection/Extraction

Power supply study on going

 Both rising & falling times should be fast for other bunches

Machine Parameters Section and Abort Systems T. Mori MAC2014

48

2013/July/29	LER	HER	unit	
E	4.000	7.007	GeV	
<u> </u>	3.6	2.6	А	
Number of bunches	2,5	00		
Bunch Current	1.44	1.04	mA	
Circumference	3,016	5.315	m	
ε _x /ε _y	3.2(1.9)/8.64(2.8)	4.6(4.4)/12.9(1.5)	nm/pm	():zero current
Coupling	0.27	0.28		includes beam-beam
β_x^*/β_y^*	32/0.27	25/0.30	mm	
Crossing angle	8	3	mrad	
α _p	3.18x10 ⁻⁴	4.53x10 ⁻⁴		
σδ	8.10(7.73)x10 ⁻⁴	6.37(6.30)x10 ⁻⁴		():zero current
Vc	9.4	15.0	MV	
σz	6.0(5.0)	5(4.9)	mm	():zero current
Vs	-0.0244	-0.0280		
v_x/v_y	44.53/46.57	45.53/43.57		
Uo	1.86	2.43	MeV	
$\tau_{x,y}/\tau_s$	43.2/21.6	58.0/29.0	msec	
ξ×/ξ _v	0.0028/0.0881	0.0012/0.0807		
Luminosity	8x10 ³⁵		cm ⁻² s ⁻¹	