

Beam-induced Background

Hiroyuki NAKAYAMA (KEK)

ARC(Mar. 3rd, 2014)

Topics reported last year

- Beam loss simulation:
 - Touschek/Beam-gas: <u>SAD-based</u> (Ohnishi, Funakoshi)
 - Radiatibe Bhabha: <u>BBBREM</u> generator
 - 2-photon: "BDK" generator
 - SR: Geant4 SR physics model
- Full-detector simulation (5th campaign)
 - PXD occupancy 2~3%: close to limit
 - TOP PMT lifetime: new PMTs are OK, still ~x2 reduction needed for old PMTs (lifetime: ~1C/cm2)
- Injection BG study

What's new in this review

- RBB cross section update
 - Less cross section due to "beam size effect"
- Full detector simulation (8th campaign)
 - Detector performance, radiation dose, neutron flux with the updated loss distribution
 - New shielding ideas (near ARICH/ECL)
 - Forward QCS design
- Monitor DAQ diagram
 - Beam abort, collimator control

ARC (Mar. 3, 2014)

Rad. Bhabha cross section: "beam size effect"

Rad.Bhabha: beam size effect

BBBREM paper: R. Kleiss, H. Burkhardt arXiv:hep-ph/9401333

- Theoretically calculated RBB cross section is larger than measured cross section at machine.
- This is explained by assuming only "impact parameter < beam size" range contributes to the measured cross section, while the theoretical calculation assume infinite impact parameter range.
- This effect was not included in default BBBREM which is used for 6th campaign

RBB HER loss distribution

Tracking by SAD

Full-detector simulation

Forward QCS cryostat design

Full-detector simulation summary

- Full simulation(8th campaign)
 - PXD occupancy: 2-photon:0.8%, SR~0.1%
 - TOP: old PMTs killed in few years w/ full lumi.
 - CDC/ARICH neutron rate: suppressed by shields
- We prefer type2 (more tungsten)
 - slightly less BG in most of sub-dets
 - slight increase in CDC rate, but it can be handled anyway

See each sub-detector report at this B2GM

http://kds.kek.jp/conferenceTimeTable.py?confId=14531#20140206

Tara Natut (7th campaign)

TOP PMT rates

New PMTs(7C/cm2), half gain, 80/ab

2MHz/PMT, 50/ab → 4C/cm2 (full-gain) → 2C/cm2 (half-gain)

2MHz/PMT, 80/ab 30^{We} \rightarrow 6.4C/cm2 (full-gain) \rightarrow 3.2C/cm2 (half-gain)

We assume 10 years x full lumi.

Measured photocathode lifetime -New PMTs: 7C/cm2 -Old PMTs : 1.5C/cm2 (best) 1C/cm2 (ave.)

New PMTs with half-gain survives 80/ab (with x2 margin) Old PMTs with half-gain can only survive 3years x full-lumi.

HER RBB loss at z=60cm is dominant source of TOP PMT background. Quick study shows material for Remote Vacuum Connection (RVC) gives ~20% TOP BG reduction, assuming RVC is equivalent to 60mm thick iron.

LER Touschek loss

R~

12c

m

HER RBB loss

Recent news on RBB

- Preliminary • We used a wrong lattice file for beam loss simulation for RBB LER
 - Dipole component of solenoid field was artificially switched off in that lattice file
- Beam loss at z=-50cm was underestimated, where shield thickness is limited
- Impact on TOP PMT BG is now under detailed investigation (increase x2?)

<u>10um Au plating</u> on inner surface of Be/Ti pipe

ARC (Mar. 3, 2014)

Latest SR simulation (DESY)

Summary for 8th campaign

	* Not including halo , mis-alignment effect		SF= <u>S</u> afety <u>F</u> actor	
	8 th campaign result	limit	SF	
PXD occupancy	2photon:0.8% (from 7 th), <u>SR:~0.1%*</u>	< 3%	<3	
CDC wire hit rate	~100kHz	<200kHz	2	
CDC Elec.Borad n-flux*	0.8	<1	1	
CDC Elec.Board dose	~20Gy/yr	<100 Gy/yr	5	
TOP PMT rate	2MHz/PMT	<1 MHz/PMT	0.5	
TOP PCB n-flux*	0.5	<1	2	
ARICH HAPD n-flux*	0.65	<1	1	
ECL crystal dose	13Gy/yr	<10 Gy/yr	1	
ECL diode n-flux*	1.2	<1	1	
ECL pile-up noise	5/1MeV	0.8/0.2MeV at Belle-I	?	

KLMs are not included showing SF<5 only (SVD is not shown 'cause it's very save) With "combined" shield inside ECL

*neutron flux in unit of 10¹¹ neutrons/cm2/yr, NIEL-damage weighted

Belle2-SuperKEKB DAQ interface

Beam abort, Collimator control, etc..

ARC (Mar. 3, 2014)

Monitor DAQ diagram

Proposed by

0.2/1Mz

Collimator control systems

- Careful operation is important at SuperKEKB/Belle-II
 - Keep IR loss <1GHz, while total collimator loss >600GHz
 - Miss-operation of collimator(espc. vertical ones) easily results in x10 or even x100 detector background level
 - Aim to develop <u>semi-automatic control algorithm</u>
- Input information:
 - beam lifetime, loss rates at collimators, sub-detector BG levels, injection efficiency, and <u>IR loss distributions</u>, etc..
- IR loss rate distribution gives insight on which BG source and therefore which collimator we should adjust
- IR loss monitor R&D has started

SuperKEKB collimators

IR loss monitors around cryostat

- For example, loss at z=+1.2m is strongly correlated with Touschek/Coulomb
- 6 or 8 sensors in phi direction at each z positions
- Type of sensor is under discussion
 - PIN diodes? Diamonds? Thin plastic scintillators to issue veto? Neutron sensors?
 - Should be prepared before summer '14 and tested at BEAST phase-1
 - Collaboration with BEAST group !!

Summary

- Detector simulations are updated every 4 month
- New shielding ideas confirmed to be effective, now start realistic design
- TOP PMT lifetime is still the biggest concern
- Propose to develop semi-automatic collimator control
 - Vertical collimator is very sensitive to IR background level
 - Detector BG information should be provided to the collimator control algorithm

Backup

ARC (Mar. 3, 2014)

Background picture Ver. 2014.3.3 TOP VIEW **Belle II** 2110 uper conducting coll ←RBB LER **FFR** RBB HER→ Bhabha) Touschek HER→ CDC PXD(2 layers avis Neutrons (rad. QCS QCS IP Chambe Beam line axis 25.95mras 683.5(Cryostat 27.25(Cryostat Coulomb HER→ ←Touschek LER and the proposition of the state of the stat PPPPPPPPP 0.1 RadBhabha(LER) RadBhabha(HER) STOCKS Touschek(LER) SUTTRACT 0.08 Touschek(HER) Coulomb(LER) 0.06 Coulomb(HER) 1 at R8 H 0.04 in Happinson India 2 0.02 Ο. -3 Loss position z[m]

Electron energy (lab)

Items omitted in the DAQ diagram

to keep it simple

- Belle solenoid field, power outage should also issue beam abort
- "injection_inhibit" signal to tell accelerator that BG level is uncomfortable, but not so bad to abort beam
- Analog path for real time monitoring by shifters
 - CDC leak current limiter (beep sound in KEKB control room at Belle1)
 - ECL BG level / TOP rate/ Injection veto timing measured by oscilloscope (send display image by CATV line)
 - We need similar ones for Belle2, also in digitized way to give to collimator semi-automatic control algorithm
- Timing signals from/to KEKB
- ZDLMs
 - Need much faster path for bunch-by-bunch feedback

Detail to do lists

- QED spent e+/e- could contribute to CDC?
- Secondary showers from collimator
- Shield around collimators/beam loss positions
- SR emitted at |s|>4m (final bending magnet)
 - Speed up mag-field calculation in simulation
- Feasibility study for IR loss monitors to feedback collimator control
- Realistic injection background (need e- gun group involved)
- Tunnel neutron BG on BKLM edges
 - Polyethylene shield thickness requirement attached to end-yoke
- Dose estimation on QCS components
- CDC neutron shield design (by CDC group)
- etc..

BG levels at each sub-detectors

7th/8th campaign

Disclaimer:

- We assume 10 Snow-Mass years of operation with the design luminosity.

- Neutron flux are normalized to 1MeV-

equivalent neutron rate using NIEL-damage.

ARC (Mar. 3, 2014)

PXD

Pit Vanhoefe

BKG	Occu. Layer 1 (%)	Occu. Layer 2 (%)
BDK	0.8	0.3
Touschek (6th MCC)	< 0.03	< 0.03
RBB (6th MCC)	< 0.13	< 0.13
Coulomb (6th MCC)	< 0.01	< 0.01
Total	< 1	< 0.5

SR: ~0.1% at one half (+z) ladder in #1 layer need to see halo/miss-alignment impact with latest results (were <1% previously)</p>

Yuri Soloviev

Close to limit (3%)

SVD

Peter Kvasnicka (7th campaign)

Source	Typical, z (%)	Change wrt. prev. campaign
Coulomb LER	0.02 ± 0.01	n.a.
RBB HER	0.04 ± 0.02	-0.01
RBB LER	0.06 ± 0.02	-0.02
Touschek LER	0.75 ± 0.63	n.a.
2-photon (BDK)	0.13 ± 0.07	0.13
Total	1.1 ± 0.6	+0.10

Source	Typical, r-phi (%)	Change wrt. prev. campaign
Coulomb LER	0.01 ± 0.01	n.a.
RBB HER	0.08 ± 0.01	- 0.02
RBB LER	0.06 ± 0.03	- 0.01
Touschek LER	1.07 ± 1.0	n.a.
2-photon (BDK)	0.27 ± 0.15	0.27
Total	1.5 ± 1.0	+0,25

Well below 10%. OK

ARC (Mar. 3, 2014)

Don van Thanh(7th campaign)

	6 th campaign	7 th campaign	Hardware requirement	Status	6
CDC hitrate	<120kHz/wire	<100kHz/wire	<200kHz/wire	ok	
Total Dose	<21Gy/year	<18 Gy/year	<100Gy/year	ok	(
Neutron flux	<2.2 10 ¹¹ n/cm²/year	<0.84*10 ¹¹ n/cm²/year	<1.0*10 ¹¹ n/cm²/year	ok	(

With this rate, "unrecoverable error" happens every ~7hours in one of FPGAs and we need to stop the data-taking to download FPGA firmware. It is still acceptable but less neutrons rate is desired.

Removed innermost ring 8 rings \rightarrow 7 rings

Radiation dose 1 Mev equiv. neutron flux ×10⁹ radiation dose [gray/year] 1MeV equiv. neutrons / cm^2 / year Coulomb LER Coulomb LER 3.5 60 Coulomb HER **Coulomb HER Touschek LER Touschek LER** 3 50 **Touschek HER** Touschek HER 2.5 Bhabha LER Bhabha LER 40 Bhabha HER Bhabha HER 2 30 1.5 20 10 0.5 TYPE 1 TYPE 1 0 0 7 8 HAPD ring # 7 8 HAPD ring # 1 2 3 5 6 1 2 3 5 6 4 Δ Rad. Dose: 3.5 gray / year Neutron flux: 0.6 x 10^11 n/cm2/year 7Th campaign: 5 gray / year 7th campaign: 1.3 x 10^11 n/cm2/year Tested up to about 1.0 x 10^11 n/cm2/year

Luka Santelj

Beam pipe aperture change for SR

HER: The aperture is 5mm radius that is larger than in previous geometry version (3.2mm).

LER: The aperture is smaller (5mm instead of 5.8mm) compare to the previous version of geometry.

• Unfortunately previous shield was already discarded

lead+Poly preferred

• But we are in contact with the same company who fabricated previous ones.

ARICH shield study

reduction. Neutron shields <u>inside</u> ARICH structure (extended to +z) is also known to be effective.

ECL

Sam de Jong

		Type 1: no tungsten	Type 2: Tungsten	With Shielding	6th Campaign	Tolerance
Crystal Radiation Dose	Forward	11.25 ↓	11.75 ↓	4.0	13.3	
(Gy/yr)	Barrel	0.5	0.5	0.25	0.5	10
	Backward	2.0	2.0	1.5	2.1	
Crystal Neutron Flux	Forward	120 ↓	110↓	140	190	
$(x10^9 yr^{-1} cm^{-2})$	Barrel	10	10	5	20	1000
	Backward	15	30	5	30	
Diode Radiation Dose	Forward	13.5↓	29.5 1	2.65	14.3	
(Gy/yr)	Barrel	<0.2	<0.2	<0.2	<0.2	70
	Backward	3	<0.2	0.3	1.7	
Diode Neutron Flux	Forward	120 ↓	110 ↓	140	190	
$(x10^9 yr^{-1} cm^{-2})$	Barrel	10	10	5	20	100
	Backward	15	30	5	30	
Reconstructed Cluster		1.66 ↑	1.90 ↑	1.36	1.34	6 for Belle
Pileup Noise Estimate	Forward	5.0↓	5.2↓	3.6	5.7	
(MeV)	Barrel	1.0	1.0	1.0	1.2	0.8 for Belle
	Backward	2.2	2.2	2.0	2.4	

Crystal radiation dose/ diode Neutron flux becomes OK, with "combined" shielding option.

ARC (Mar. 3, 2014)