Beam Dynamics Beam-beam and electron cloud

K. Ohmi, D. Zhou SuperKEKB MAC2014, Mar 3-4, 2014 Thanks to H. Fukuma, A. Morita, Y. Ohnishi, K. Oide, H. Sugimoto, Y. Suetsugu, G. Stupakov, E.Levichev, P. Piminov, D. Sagan, Y. Zhang

Machine parameters

2013/July/29	LER	HER	unit	
E	4.000	7.007	GeV	
I	3.6	2.6	Α	
Number of bunches	2,5	2,500		
Bunch Current	1.44 1.04		mA	
Circumference	3,010	m		
εχ/εγ	3.2(1.9)/8.64(2.8)	4.6(4.4)/12.9(1.5)	nm/pm	():zero current
Coupling	0.27	0.28		includes beam-beam
βx*/βy*	32/0.27	25/0.30	mm	
Crossing angle	8	mrad		
αρ	3.18x10 ⁻⁴	4.53x10 ⁻⁴		
σδ	8.10(7.73)x10 ⁻⁴	6.37(6.30)x10 ⁻⁴		():zero current
Vc	9.4 15.0		MV	
σz	6.0(5.0)	5(4.9)	mm	():zero current
Vs	-0.0244	-0.0280		
v_x/v_y	44.53/46.57	45.53/43.57		
Uo	1.86	2.43	MeV	
Tx,y/Ts	43.2/21.6	58.0/29.0	msec	
ξx/ξy	0.0028/0.0881	0.0012/0.0807		
Luminosity	8x1	cm ⁻² s ⁻¹		

From <u>http://www-superkekb.kek.jp/index.html</u>²

Beam-beam effects in nano beam collision

- Simulation results of weak-strong simulation, BBWS, using linearized arc.
- Error tolerance for IR optics
- Realistic arc containing lattice nonlinearity.
- Space charge and beam-beam.

2. Beam-beam and luminosity: LER

► Lum. tune scan for LER (by BBWS: weak strong with linear arc)

 $\begin{array}{c} 0.75 \\ 0.7 \\ 0.65 \\ 0.65 \\ 0.55 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.6 \\ 0.65 \\ 0.6 \\ 0.65 \\ 0.6 \\ 0.65 \\ 0.6 \\ 0.65 \\ 0.7$

Choice of tune operating point v_x near half integer, keep away from synchrobeta resonance v_x , v_y =0.53,0.57

4

2. Beam-beam and luminosity: HER

► Lum. tune scan for HER (by BBWS: weak strong with linear arc)

5

 σ_z

2. Beam-beam and luminosity: LER

➤ Lum. scan w/o and w/ crab waist for LER (by BBWS)

The crab waist is very powerful.

Degradation of dynamic aperture is inevitable, because nonlinearity between IP and crab waist sextupole is not transparent.

IR error tolerance

Summary of IR error tolerance

	SuperKEKB	KEKB
dx/σ_x (static)	0.8	-
dy/σ_y (static)	0.8	0.4
dx/σ_x (fast)	0.08	-
dy/σ_y (fast)	0.09	0.025
ds	$0.07 \mathrm{~mm}$	$2 \mathrm{~mm}$
r_1	$3.0 \mathrm{\ mrad}$	$2.1 \mathrm{\ mrad}$
r_2	$0.1 \mathrm{mm}$	$0.4 \mathrm{~mm}$
r_3	$10 {\rm m}^{-1}$	$0.35 { m m}^{-1}$
r_4	$0.4 \mathrm{rad}$	$0.07 \mathrm{rad}$
$dr_1/d\delta$	2.1	6.1
$dr_2/d\delta$	$0.074 \mathrm{\ m}$	2.5
$dr_3/d\delta$	8400 m^{-1}	$1100 {\rm m}^{-1}$
$dr_4/d\delta$	290	440
η_y	$31~\mu{ m m}$	$500~\mu{ m m}$
η_y'	0.23	0.6

Beam-beam interaction in the realistic lattice

- Weak-strong beam-beam simulation using SAD.
- Crosscheck is began using other codes, Acceleraticum (Levichev,Piminov), BMAD(Sagan), SCTR (K.O.).

Weak-strong Simulation for LER lattice

- Even low current, luminosity loss ~20% is seen.
- > 30% loss at the design current.
- Chromatic effect can not explain the lum. Loss.

sler 1684

Beam tail distribution LER, $A=J/\epsilon$

0 ò

• Ne=6.53x10¹⁰,

SAD +weak-strong BB

A_x

Weak-strong Simulation for HER

No remarkable luminosity loss is seen (~10%).
 The lum. loss is mainly due to chromatic effect

Other experiences on beam-beam in realistic lattice

No crab

KEKB crab, EPAC08

 No clear degradation due to lattice nonlinearity is seen in KEKB, except high beam-beam parameter.

BEPC-II

- SCTR code showed 15% loss at 6 & 8 mA.
- SAD does not show clear difference

SuperKEKB

• Simplified IR model for SuperKEKB

Parameters 🖓	L	LER 🕶		HER₽		
	wo FF 🕶	w FF 🕶	wo FF 🕶	w FF 🕶	¢2	
Energy, E⊷	4.()00•	7.0	<u>GeV</u> ₊²		
Circumference, L 🕶	3.01631 +					
H tune, ν _x ₽	44.529872 🕶	44. 528621 🕶	45.529934 🕶	45. 529659 🕶	تو	
V tune, vz ↔	42.563915 🕶	44. 568009 🕶	42.570035 🕶	43. 563408 🕶	¢.	
Hor delta tune ^{*)} , Δv _x ₽	-1.28·10 ⁻⁴	1.38·10 ⁻³ •	6.61·10 ⁻⁵	3.41·10 ⁻⁴	e,	
Ver delta tune ^{*)} , Δv_z	-1.30·10 ⁻⁴	1.99·10 ⁻³ •	3.52·10 ⁻⁵	6.59·10 ⁻³	e2	
Synchrotron tune, v₅⊷	0.022026	0.024424	0.027398	0.027934	¢2	
Hor natural chrom ^{**)} , ξ _x ₽	-55.2 🕶	-116 🕶	-75.4 🕶	-171 🕶	¢2	
<u>Ver</u> natural <u>chrom</u> ^{**)} , ξz •	-78.9	-804 🕶	-65.5 🕶	-1528 🕶	e,	
Hor total chrom, ξx*	0.76 🕶	-0.4 🕶	1.17 🕶	5.4 🕶	es.	
<u>Ver</u> total chrom, ξz ↔	1.65 🕶	6.7 🕶	1.08 🕶	4.1 🕶	تو	
Compaction factor, α	2.583·10 ⁻⁴ •	3.170·10 ⁻⁴	4.335·10 ⁻⁴ •	4.505·10 ⁻⁴ ⊷	e,	
Energy losses, <i>U</i> ₀ * ²	2.08 🕶	2.08 🕶	2.5 🕶	2.5 🕶	MeV⊷	
Hor damping time, $\tau_x \bullet$	38.7 🕶	تھ	56.5 🕶	e.	ms₊	
<u>Ver</u> damping time, τ _z ₊	38.7 🕶	تم	56.5 🕶	تو	ms⊷	
Long damping time, τ _s ↩	19.4 🕶	تم	28.2 🕶	e.	ms₽	
Hor emittance, ε _x .	2.14 🕶	تم	4.48 🕶	ea.	nm∙rad₊	
Energy spread, σ∆E/E⊷	8.036.10-4*	تم	6.42·10 ⁻⁴	ea.	¢,	
Bunch length, σs ⊷	0.45 🕶	تم	0.49 🕶	ت <u>م</u>	cm 🕶	

Tab. 1. The main parameters (for zero current). ←

(black) – $\Delta E/E=0$, (blue) – $\Delta E/E=0.5\%$, (red) – $\Delta E/E=1\%$

Space charge: LER

Weak-strong model for space charge
 "Strong" beam: Emittance growth due to IBS included
 Remarkable luminosity loss is seen (65%).

Electron cloud instability

- Threshold of single bunch instability using simple model, constant beta, resonator wake.
- Threshold of single bunch instability using realistic lattice and cloud density.
- Incoherent emittance growth due to electron cloud located at the high beta section.

Threshold of single bunch instablity

• Constant beta model, resonator wake.

Lattice		KEKB	Cesr-TA	PETRA-III	SuperKEKB	Super B
Circumference	<i>L</i> (m)	3,016	768	2304	3016	1260
Energy	$E ~({\rm GeV})$	3.5	2-5	6	4.0	6.7
Bunch population	$N_{+}(10^{10})$	8	2	0.5	9	5
Beam current	I_+ (A)	1.7	-	0.1	3.6	1.9
Emittance	$\varepsilon_x(\text{nm})$	18	2.3	1	3.2	2
	$\varepsilon_y(\text{nm})$	0.18	0.023	0.01	0.01	0.005
Momentum compaction	$\alpha(10^{-4})$	3.4	68	12.2	3.5	
Bunch length	$\sigma_z(\text{mm})$	6	6.8	12	6	5
RMS energy spread	$\sigma_E / E(10^{-3})$	0.73	0.8		0.8	0.64
Synchrotron tune	ν_s	0.025	0.067	0.049	0.0256	0.0126
Damping time	$ au_x(\mathrm{ms})$	40	56.4	16	43	26

		KEKB	KEKB	Cesr-TA	PETRA-III	SuperKEKB	SuperB
		(no sol.)	(50 G sol.)				
Bunch population	$N_{+}(10^{10})$	3	8	2		8	5
Beam current	I_+ (A)	0.5	1.7	-	0.1	3.6	1.9
Bunch spacing	$\ell_{sp}(ns)$	8	7	4-14	8	4	4
Electron frequency	$\omega_e/2\pi(\mathrm{GHz})$	28	40	43	35	150	175
Phase angle	$\omega_e \sigma_z/c$	3.6	5.9	11.0	8.8	18.8	18.3
Threshold	$\rho_e (10^{12} \text{ m}^{-3})$	0.63	0.38	1.7	1.2	0.27	0.54

Electron cloud effects in realistic lattice and electron distribution Beta function and estimated cloud density

Two cases of cloud densities, case 1; green (low density in high β Q) and model 2; cyan (high density in high β Q) curves. (Suetsugu)

Tune shift contribution

- Tune shift and $\rho_{e}\beta_{v}$ near IR (-70<s<70m) are dominant.
- Design

Betatron tune and electron frequency variations

- High beta section separate the betatron phase difference π . Nonlinear force with even parity is coherently accumulated.
- $\omega_e \sigma_z/c$ is very high near IP. The area is narrow and low beta, neglect.

Vertical emittance growth caused by the electron cloud fast head-tail instability

Radiation damping and excitation

- Equilibrium emittance is $1.5 x \epsilon_{\text{design}}$ for ρ_{e} =3x design, $1.2 \epsilon_{\text{design}}$ for ρ_{e} =2x in the case 2.
- The effect is 1/3 in the case 1 (high density in high β Q).
- Radiation damping suppress the coherent instability at $\rho_e\text{=}4\text{-}5x$ design (black to magenta).

Summary I

- Beam-beam effect in realistic Lattice has been studied using weak-strong & SAD.
- Clear luminosity loss (30%) has been seen.
- In KEKB, BEPC, the loss is small.
- Crosscheck is began using several codes. Understanding of mechanism will be performed.
- Further loss (60-70%) is seen in taking account of space charge. Crosscheck and understanding will be performed.

Summary II

- Electron cloud in high beta section near IR is dominate for instability and emittance growth.
- The effects become visible at the cloud density twice higher than the design.