Injector Commissioning

Masanori Satoh (Accelerator Laboratory, KEK) for the Linac Commissioning Group

The 19th KEKB Accelerator Review Committee, March 3-5, 2014

Contents

- 1. Injector Upgrade
 - 1. Overview
 - 2. Energy spread
 - 3. Low emittance preservation
 - 4. Simultaneous top-up for 4-rings
- 2. Injector Commissioning
 - 1. Schedule
 - 2. Recent progress of electron commissioning
 - 3. Issues
- 3. Summary

Contents

- 1. Injector Upgrade
 - 1. Overview
 - 2. Energy spread
 - 3. Low emittance preservation
 - 4. Simultaneous top-up for 4-rings
- 2. Injector Commissioning
 - 1. Schedule
 - 2. Recent progress of electron commissioning
 - 3. Issues
- 3. Summary

Injector Upgrade Items

- Low emittance photo-cathode rf gun (M. Yoshida)
- New positron source (T. Kamitani)
- Damping ring (N. Iida, KEKB review 2013)
- Timing system (H. Kaji)
- LLRF development (T. Miura)

e- Linac Beam Parameters

	SuperKEKB	KEKB
Energy (GeV)	7.0	8.0
HER stored current (A)	2.6	1.1
HER beam lifetime (min.)	6	200
Maximum beam repetition (Hz)	50	50
Max. # of bunch in an rf pulse	2	2
Emittance (mm·mrad)	50/20 (Hor./Ver.)	100
Charge (nC)	5	1
Energy spread (%)	0.08	0.05
Bunch length σz (mm)	1.3	1.3
Damping ring	-	-
Simultaneous top-up injection	4 rings (SuperKEKB e-/e+, PF, PF-AR)	3 rings (KEKB e-/e+, PF)

e+ Linac Beam Parameters

	SuperKEKB	KEKB	
Energy (GeV)	4	3.5	
LER stored current (A)	3.6	1.6	
LER beam lifetime (min.)	6	133	
Maximum beam repetition (Hz)	50	50	
Max. # of bunch in an rf pulse	2	2	
Emittance (mm·mrad)	100/20 (Hor./Ver.)	2100	
Charge (nC)	4	1	
Energy spread (%)	0.07	0.125	
Bunch length σz (mm)	0.7	2.6	
Damping ring	0	-	
Simultaneous top-up injection	4 rings (SuperKEKB e-/e+, PF, PF-AR)	3 rings (KEKB e-/e+, PF)	

Contents

- 1. Injector Upgrade
 - 1. Overview
 - 2. Energy spread
 - 3. Low emittance preservation
 - 4. Simultaneous top-up for 4-rings
- 2. Injector Commissioning
 - 1. Schedule
 - 2. Recent progress of electron commissioning
 - 3. Issues
- 3. Summary

Uniform shape of longitudinal beam distribution

- Energy spread should be less than 0.08%
- Mitigate longitudinal wakefield and reduce energy spread
- Gaussian distribution in momentum space

Energy spread simulation

- For 10 ps bunch length,
 - $\sim 0.3\%$ for Gaussian distribution
 - < 0.08% for uniform distribution
- Uniform distribution is necessary.
 (Temporal manipulation of rf gun laser)

Contents

1. Injector Upgrade

- 1. Overview
- 2. Energy spread
- 3. Low emittance preservation
- 4. Simultaneous top-up for 4-rings
- 2. Injector Commissioning
 - 1. Schedule
 - 2. Recent progress of electron commissioning
 - 3. Issues

3. Summary

Low emittance electron

- Low emittance electron beam should be delivered to MR w/o damping ring.
- Emittance preservation is key issue for e- beam.
- Low emittance rf gun (M. Yoshida, T. Natsui, X. Zhou)
- Emittance growth simulation (H. Sugimoto)
 - SAD code, Elegant
 - Initial bunch charge: 5 nC
 - Initial emittance: 6 mm·mrad
 - Initial bunch length: 10 ps (FWHM)
 - Initial energy spread : 0.4%
 - Initial beam energy: 20 MeV
 - Uniform longitudinal beam distribution

Emittance growth due to component misalignment

- Simulation results from 100 different seeds
- Misalignment of Quadrupole magnets and Accelerating structure:
 - $\sigma < 0.1 \text{ mm}$: $\varepsilon 20 \text{ mm} \cdot \text{mrad}$ is almost satisfied.
 - $\sigma > 0.1$ mm: emittance preservation is very difficult.

Bunch compression at J-ARC

- Mitigate transverse wakefield and emittance growth
- Initial bunch length 10 ps => 5 ps (bunch compression at J-ARC)
 - First stage compression at A1 unit (30 ps => 10 ps)
- Control R56 and energy spread at J-ARC

Emittance (misalignment $\sigma = 0.3$ mm)

- Bunch compression is effective.
- However, still not enough for 20 mm·mrad.

Offset injection for emittance preservation

- Offset injection: intentional change of misalignment seed.
- Control the steering magnet at the beginning of Sector C

- Kick angle is relatively small.
- Need a high-precision and stable orbit control.

Low emittance electron issue

- Component alignment is important
 - $\sigma < 0.1$ mm: enough for emittance (alignment is very difficult)
 - $\sigma > 0.1$ mm: beam manipulation is necessary.
- Simulation w/ misalignment $\sigma \thicksim 0.3 \text{ mm}$
 - Emittance can be preserved by
 - J-ARC: Bunch compression
 - Sector C: Offset injection
 - Simulation w/ measured misalignment
- Alignment requirement:
 - $\sigma < 0.3$ mm for global (whole Linac)
 - $\sigma < 0.1 \text{ mm}$ for local (one Sector ~ 100 m)

Fast e-/e+ beam switching (KEKB)

- Fast control of e- beam orbit by pulsed steering magnet and e+ target with a hole.
- Similar system will be installed for SuperKEKB.
- Beam position and angle should be fixed at the target location.

Contents

1. Injector Upgrade

- 1. Overview
- 2. Energy spread
- 3. Low emittance preservation
- 4. Simultaneous top-up for 4-rings

2. Injector Commissioning

- 1. Schedule
- 2. Recent progress of electron commissioning
- 3. Issues

3. Summary

Simultaneous Top-up Operation for three rings

Stored beam current stability since Apr. 2009
KEKB: 1 mA (~ 0.05%): e-: 12.5 Hz, e+: 25 Hz
PF: 0.05 mA (~ 0.01%) : 0.5 Hz

PF-AR injection: 20 min., twice daily

- Interrupt KEKB injection
- Problem for SuperKEKB (beam lifetime: 6 min.)

Simultaneous top-up including PF-AR injection

- PF-AR and KEKB share the long part of beam transport line.
- Existing tunnel space is very tight.
- New beam transport line is required for PF-AR top-up injection.
- New tunnel is under construction. (FY2013)

New BT will be available in Jan. of 2016.

Contents

- 1. Injector Upgrade
 - 1. Overview
 - 2. Energy spread
 - 3. Low emittance preservation
 - 4. Simultaneous top-up for 4-rings
- 2. Injector Commissioning
 - 1. Schedule
 - 2. Recent progress of electron commissioning
 - 3. Issues

3. Summary

Schedule - Our goal -

- Beam charge
 - e-: 5 nC (10 nC for e+ production)
 - e+: 4 nC
- Emittance preservation at end of Linac
 - e-: 50/20 mm·mrad w/o DR (Hor./Ver.)
 - e+: 100/20 mm·mrad w/ DR (Hor./Ver.)
- Stability
 - Charge
 - Position
 - Energy
 - Energy spread
 - Emittance
 - Simultaneous top-up for 4 rings

- Commissioning Stage 1: Oct. 2013 ~ Mar. 3 2014
 - Nov. 2013: e+ beam line construction
 - Dec. 2013: Daytime: e+ beam line construction $(9 \sim 20)$

Night shift: e- beam commissioning

- Jan., Feb. 2014: Sometimes day shift for e+ beam line construction
- Beam injection for PF top-up and PF-AR twice daily

– Sector 3 to Sector 5

- Full Linac Study: Every Tuesday (Sector A to Sector 5)
- We have not enough time for study.
- e+ beam line is not yet completed.

- Result of Commissioning Stage 1
 - RF conditioning of gun cavity
 - Laser tuning for e- rf gun
 - 5.6 nC from gun, 0.58 nC at end of Linac
 - Development of commissioning tools
- Next commissioning Stage 2:
 - Apr. 11~ Jul. 1, 2014
 - Mid. of May (daytime) ~: Commissioning only in Sector A, B (DR construction)
 - Emittance preservation of e-
 - Install Flux concentrator (End of May) and e+ commissioning 26

- Next commissioning Stage 3:
 - Oct. Dec. 2014
 - e+ commissioning
 - Emittance preservation of e- beam
 - Goal of this stage:
 - e- :1 nC w/ low emittance
 - e+: 1 nC w/o low emittance
 - Stable beam (charge, orbit,...)
- Commissioning Stage 4:
 - Feb. June 2015
 - Beam Injection to MR (May 2015)

- Commissioning Stage 5:
 - Oct. Dec. 2015
 - During summer shutdown: install pulsed Quadrupole and Steering magnets
 - Pulse-by-pulse switching e-/e+ beam
 - Increase beam charge, Improve beam stability
 - Emittance preservation
 - e+ DR commissioning (Dec. 2015)

Contents

- 1. Injector Upgrade
 - 1. Overview
 - 2. Energy spread
 - 3. Low emittance preservation
 - 4. Simultaneous top-up for 4-rings
- 2. Injector Commissioning
 - 1. Schedule
 - 2. Recent progress of electron commissioning
 - 3. Issues
- 3. Summary

Recent progress of electron commissioning

- Commissioning items:
 - RF conditioning of gun cavity
 - Laser tuning for e- rf gun
 - High intensity beam charge up to 5 nC
 - Beam deliver to Linac end
 - Bunch compression @ A1 unit
 - Bunch compression @ J-ARC
 - Emittance measurement
 - A1 unit, Sector B, Sector C, Sector 2, Sector 5

Beam position measurement **Beam diagnostics**

- \bullet
 - BPMs x100 (Strip-line type electrodes)
 - Data processing
 - Oscilloscope ($\sigma 25 \sim 50 \ \mu m$) => VME-based one ($\sigma \sim 10 \ \mu m$) is under development •
- Beam profile measurement ullet
 - Screen monitors x100
 - Multiple wire scanners x4
- Bunch length measurement ullet
 - Streak cameras x3

Injector Commissioning

RF gun e- beam (5.12 GeV) in Oct. 2013

Typical beam charge 1 ~ 2 nC (end of Sector B) \bullet File Update $2 \sim 3 \text{ nC}$ (RF gun) Linac PF-A1 e- Study Orbit DX (mm) 2 0 -2 -4 4 (mm) / 2 / 2 -4 SP A1 2 3 DX(1st): -1.237 mm () 2 -00 1 -2 @ --1 (nC) DX(2nd): 0.971 mm DY(1st): -0.833 mm DY(2nd): -2.092 mm Q(1st): 1.497 nC 0. Q(2nd): 0.070 nC SP_A2_3 SP_A2_3 SP_A2_3 SP_A2_3 SP_A2_3 SP_A2_3 SP_A2_3 SP_A2_3 SP_A1_1 SP_A1_1 SP_A1_1 SP_A1_1 SP_A3_2 SP_R0_14 SP_R0_02 SP_R0_01 SP_R0_22 SP_R0_32 SP_R0_42 SP_R0_51 SP_R0_62 SP_R0_63 SP_A4_2 SP_82_4 SP_B3_4 SP_B4_4 SP_B6_4 SP_87_4 SP_A3_4 SP_A4_4 SP_B1_4 SP_B5_4 -Range -Show DY 5 - Qe- 3 - Qe+ 3 -DX 5 Replot 👅 Current 🔄 Ref 🔄 Current-Ref 🔄 Average5 🔄 Average10 🔄 SQR 🔄 Current-SQR Sector Bunch I KBE I KBP I PFE I QFE I ARE I JBE I JBP I RFE I SFE I ZRE Set Ref B 📕 R 🔤 C 🔄 1 🔄 2 🔄 3 🔄 4 🔄 5 🔄 6 🔄 BT 📕 1st 🔄 2nd 🔳 A 🔳 SP_R0_42_Current : DX=[0.33, 0.83] DY=[-2.47, -0.71] Qe-=[0.01, 0.01] peak hold (60sec) resize 10

Typical beam charge stability

Beam position stability @ SP_A1_C5

- Measured beam position at first BPM (SP_A1_C5)
 - $-\sigma x \sim 0.57 \text{ mm}$
 - $~\sigma y \sim 0.11~mm$
- Fluctuation of horizontal beam position is larger than vertical one.

Bunch compression at A1 unit

• To mitigate space charge effect, bunch length is compressed from 30 ps to 10 ps.

Single shot bunch length measurement at A1 unit (streak camera)

w/o bunch compression

w/ bunch compression

Energy spread measurement @ J-ARC

- Measure beam energy spread by screen monitor (middle of J-ARC) w/ and w/o bunch compression at A1 chicane.
- Bunch compression at A1 unit is effective for energy spread compensation.

Super

KEKB

Emittance measurement example (A1 unit)

- Quadrupole scan
- Screen monitor *a* middle of chicane

Emittance measurement example (Sector B) Multiple wire scanner in Sector B

- Typical result:
 - $\epsilon_{n,x}$: 95.01 ± 19.97 mm·mrad
 - $\epsilon_{n,y}$: 19.67 ± 33.79 mm·mrad
- Charge stability is not so small. Software is under development for subtracting shot-by-shot beam fluctuation.

Bunch compression @ J-ARC

- Isochronous, R56 = -0.3 m
- w/ different RF Φ in Sector A, B

Preliminary result of bunch compression @ J-ARC

- Clear bunch compression is not yet measured.
- Continue bunch compression study
- Apr. 2014 ~: Measure emittance by wire scanner @ Sector 2 w/ and w/o J-ARC bunch compression.

		Untitled		Measurement Condit
				Live Time 100 Rccum.Time 100 Control the Streak Ca U-Sweep Range 6.33 MCP Gain 88
200000 150000 - 100000 -		Mark 1 = Mark 2 = FWHM = AREA =	251.203ns 107 251.214ns 119 4.207ps (261.208ns) 2321488 cnt 1	70 ort 36 ort The put of the search put se
50000	261.18ns	261.20ns	i i 261.24na 26	<pre>< Condition iBeamC151 Recum.Time 18e puise Mrcp Gain 08[7,] Streak Mode 187, Streak Mo</pre>
\sim				· · · · · · · · · · · · · · · · · · ·
S	treak	cam	era @) CI uni
S	treak	cam	era @) CI uni

Summary of electron commissioning

Item	Requirement	Current status
Beam charge (nC)	5 (10 for e+ primary)	5.6 (first BPM) 0.58 (Linac end)
Beam energy (GeV)	7	5.12
Normalized emittance (mm·mrad)	50/20 (Hor./Ver.)	20/7 (Hor./Ver.) (@A1 unit)
Beam charge stability	2.5% (KEKB)	$10\% \sim 20\%$
Bunch compression @ A1 unit	30 ps => 10 ps	10 ps ~ 15 ps
Bunch compression @ J-ARC	10 ps => 5 ps	n/a
Temporal manipulation of laser	Uniform shape	n/a
Emittance preservation	20 mm·mrad at Linac end	n/a
Max. beam repetition	50	5
# of bunches	2	1
Operation	Simultaneous top-up	n/a

Contents

- 1. Injector Upgrade
 - 1. Overview
 - 2. Energy spread
 - 3. Low emittance preservation
 - 4. Simultaneous top-up for 4-rings

2. Injector Commissioning

- 1. Schedule
- 2. Recent progress of electron commissioning
- 3. Issues

3. Summary

Issues

• New e+ source

- Flux concentrator
 - Dec. 2013 => End of May 2014
- Large aperture S-band structure (LAS)
- RF conditioning of LAS is not completed.
- e+ commissioning is delayed.
- e- commissioning:
 - Started in Oct. 2013.
 - Not enough time for injector commissioning
 - Beam stability (charge, position) is not yet enough.

Contents

- 1. Injector Upgrade
 - 1. Overview
 - 2. Energy spread
 - 3. Low emittance preservation
 - 4. Simultaneous top-up for 4-rings
- 2. Injector Commissioning
 - 1. Schedule
 - 2. Recent progress of electron commissioning
 - 3. Issues

3. Summary

- Commissioning stage 1: (Oct. 2013 ~ Mar. 2014)
 - New RF gun commissioning (laser tuning and cavity conditioning)
 - High intensity charge
 - Prepare beam diagnostics and commissioning tools
 - New Photo-cathode RF gun has successfully manufactured and installed. (Summer 2014)
 - 5.6 nC from New RF Gun
 - 0.58 nC at end of Linac
- Stage 2: (Apr. 11~ Jul. 1, 2014)
 - Emittance preservation of e- at the end of Sector B, Sector 5
 - Bunch compression at J-ARC, offset injection, wake field bump,.....
 - Positron beam commissioning (May 2014 ~)
 - Beam stability
 - Charge, Position, Energy, Energy spread, Emittance

Injector Commissioning

Thank you for your attention!