TiN Coating and Baking of Beam Pipes

The 19th KEKB Accelerator Review Committee
March 3, 2014
Kyo Shibata (on behalf of KEKB Vacuum Group)

Introduction 1

- What should we do before the installation of new beam pipes?
 - For HER (e-): Baking at the laboratory(not in-situ)
 - For LER (e+): Baking & TiN coating at the laboratory
 - For Damping Ring: TiN coating at the laboratory
 - For all beam pipes : assembling work (NEG pump , BPM electrode)
- How many beam pipes should be processed?
 - For HER (e-) : ~180
 - For LER (e+) : \sim 1000 (of which \sim 25 have electron clearing electrodes and TiN coating is unnecessary.)
 - − Damping Ring : ~100
- Pre-installation work (coating and baking) started on April 2012.
 - "Pre-installation work" means:
 Bringing beam pipes to KEKB Oho Lab. from storage area -> Coating (3days) -> Baking (3days) -> returning the beam pipes to storage area
 - Large-scale works by 10 workers started on September 2012.

Flow chart of pre-installation work

Bringing beam pipes to KEKB Oho Lab. from storage area Visual check on the beam pipe LER beam pipe DR beam pipe HER beam pipe without electrode **TiN Coating** LER beam pipe with electrode Assembling (NEG pump & BPM electrode) DR beam pipe Baking KEKB Oho Lab. Returning the beam pipes to storage area

Introduction 2

- What we did after last KEKB Review are
 - Setting up horizontal coating facility with 2 equipment systems for bent beam pipes.
 - Coating and baking of ~430 beam pipes for LER and HER, of which 111 beam pipes were bent pipe and coated by the new horizontal facility.
 - Pre-installation works of 925 beam pipes were finished in total so far.
 - More 450 beam pipes (LER and HER: 350, Damping Ring: 100) must be coated and baked by the end of this year.
 - Modifying the horizontal coating facility for damping ring beam pipes. (in progress now)
- Topics discussed in this talk are
 - Baking & TiN coating facility (review)
 - Status report on baking and coating works
 - Working Schedule

Layout of Oho laboratory 1

- Baking equipment : 2 long type (~5 m) and 2 short type (~3 m)
- Vertical TiN coating facility with 4 equipment systems for straight beam pipes
- Horizontal coating facility with 2 equipment systems for bent beam pipes

Layout of Oho laboratory 2

View from different place.

Baking 1: Equipment

- Hot-air heating method was adopted.
 - Two beam pipes are mounted up and down in one hot-air oven.
 - Hot-air oven consists of movable insulated walls and insulated frame.
 - Hot air is circulated in the hot-air oven.
 - Each pipe is evacuated by a turbo-molecular pump (0.3 m³/sec) during the baking.

Short type

unit

Baking 2: Baking conditions

Baking conditions

- Temperature : ~150 °C (~120 °C for beam pipes with electrodes)
- − Baking period : ~26 hours
 - Temperature of the beam pipes in the oven became ~150 °C within a several hours.
- Targeted pressure after baking : < 10⁻⁷ Pa
- NEG pump is activated at the same time.

Before baking

- TiN coating (if necessary)
- Installation of NEG pumps and BPM electrodes at Oho clean room.

After baking

- Filling with dry nitrogen up to atmospheric pressure.
- Isolating the beam pipe and putting a blank flange on the beam pipe.
- Keeping the beam pipe in the storage area until the installation.

Clean room

Storage area (Oho lab.)

Baking 3: Baking output

- Baking work started on April 2012.
- Total output by last month (2014/2/28) is 925.

- More 350 beam pipes must be baked by the end of November at the latest.
 - Last year 367 beam pipes were baked in 7 months (from April to October).
 - Baking work will restart from April.

Baking 4: Achieved pressure after baking

- For almost all beam pipes, achieved pressures after baking are below 1×10^{-7} Pa.
 - If achieved pressure is higher than 1×10^{-7} Pa, the beam pipe is baked again.
 - Mass pattern after baking is not monitored. (Though 2 of 4 baking equipment systems have RGAs, we don't use them.)

TiN coating 1: Coting method

- For SuperKEKB LER and DR, it is an important issue to mitigate the electron cloud instability.
 - In order to reduce the electron cloud, inner surfaces of almost all LER beam pipes are coated with TiN (except beam pipes with clearing electrodes).
 - TiN coating tests had been performed and the coating method was established.
- TiN coating is done by a DC magnetron sputtering of Ti in Ar and N₂ atmospheres.
 - A Ti cathode rod (-400 V) is set on the center axis of beam pipe.
 - Gases are supplied into the beam pipes uniformly though the Ti rod.
 - Magnetic field (16 mT) is supplied by solenoid coils.
 - Preliminary experiments were performed at a test stand to decide the coating parameters.
 - Thickness of TiN coating : 200 nm (at least)
 - Straight beam pipes are coated by vertical type and bent pipes are coated by horizontal type.

TiN coating 2: Facility (vertical)

• Straight beam pipes are coated by vertical facility with 4 equipment

systems..

- Ti cathode is hung from the top of the pipe.
- Beam pipe with a length up to 5.5 m can be coated.
- Short beam pipes and dummy pipes are connected to make total length ~6 m.
- Two lines of the beam pipes can be mounted side-by-side in one equipment.
- Combination of hot-air oven and circulators are adopted for prebaking.
- It is not available for bent beam pipes.
- Large-scale work started on September 2012.

TiN coating 3: Facility (horizontal)

- Bent beam pipes are coated by horizontal facility with 2 equipment systems.
 - Basically, horizontal equipment has the same structure with vertical equipment.
 - Beam pipes lie down in the solenoid coils.
 - Ti cathode is set horizontally on the center axis of beam pipe by the ceramics supports with wheels.
 - Large-scale work started on April 2013.

TiN coating 4: Working process

- Before coating (at Oho clean room)
 - Visual check on the beam pipe.
 - Putting blank flanges on pumping ports and BPM ports.
 - Connecting beam pipes and dummy pipes for length tuning. (if necessary)
 - Leakage test
 - Installation of beam pipes on coating equipment.
- In coating equipment
 - Leakage test
 - Pre-baking (~150 °C, ~24 hours)
 - TiN coating (Discharge duration : ~80 min.)
- After coating
 - Filling with dry nitrogen up to atmospheric pressure.
 - Dismantling beam pipes
 - Installation of NEG pumps and BPM electrodes at Oho clean room.
 - Baking

Leakage test before installation

TiN coating 5: Coating 1

- Introduced gases : Ar (~2.2 Pa), N2 (~1.8 Pa)
- Discharged current: 6.3 A
- Required time: 5 min (Ti coating for base of TiN) + 75 min (TiN coating)

Ti cathode rod

Horizontal type

2014/3/3

TiN coating 6: Coating 2

Beam pipe (bent type) was successfully coated. Though the color of the ceramic support was changed, insulation breakdown did not occurred.

Electron microscopic image of TiN coating

TiN coating 7: Performance evaluation

- SEY of Al samples coated with TiN at this facility were measured.
 - It was confirmed that SEY of TiN coating drops to below 0.8 after electron irradiation (incident electron energy: 250 eV)

TiN coating 8: Modification for DR 1

- Coating of beam pipes for DR are done by the horizontal facility.
- New Ti cathode plate with the same curvature as the beam pipe is required.

2014/3/3

TiN coating 9: Modification for DR 2

- Modification for DR is nearly done.
- Coating work will start soon.

TiN coating 10: Coating output

- Coating work started on July 2012.
- Total output by last month (2014/2/28) is 805.
- More 280 beam pipes (LER:180, DR:100) must be coated by the end of this year.
 - Last year 345 beam pipes were coated in 7 months (from April to October).
 - LER: From April to October at the latest.
 - DR: March, November and December.

- Pre-installation works (coating and baking) started on April 2012.
 - Large-scale works by 10 workers started on September 2012.
 - Coating of bent beam pipes started on last April by the horizontal coating facility
 - Pre-installation works of 925 beam pipes were finished in total, of which 111 beam pipes were bent pipe and coated by the horizontal facility.
- Pre-installation work has been performed well so far without any serious problems.
 - Though many connection flanges (MO flange) required treatment for scratches on the vacuum sealing surfaces after coating, this problem was solved by burnishing sealing surfaces with hand.
 - Pre-installation work is almost on schedule so far.
- Modifying the horizontal coating facility for damping ring beam pipes is in progress now.
 - Coating work will start soon.
- By the end of this year, ~450 beam pipes must be baked and coated.
 - LER and HER (350): From April to November at the latest.
 - Damping Ring (100): March, November and December.
 - "450 beam pipes" seem to be an achievable goal.

