Belle II physics, schedule and construction status

ARC 2014.03.03 S.Tanaka

^{2014/3/3} Slides based on 8th Belle PAC: Feb. 9-11 and 17th B2GM:Feb. 4-8

1

Physics motivation

- The Flavour Sector of the Standard Model is remarkably successful.
- Requires the knowledge of masses and of strength and type of the charged-current interactions.
- Most SM extensions contain new CP-violating phases and new quark-flavour changing interactions (but no evidence from B-factories & hadron machines!)

Searches for New Phenomena by flavor frontier

Energy Frontier: Production of new particles from *collisions* at high-Energy (LHC)

· Limited by Beam Energy

Flavor Frontier: virtual production of new particles to probe energies beyond the energy frontier.

- Often first clues about new phenomena, e.g. weak force, c, b, t quarks, Higgs boson.
- High precision required: very tiny effects
- Consistency between ATLAS/CMS and FF necessary to understand the NP flavour puzzles

Highly virtual, thus probabilities small

Phase 1 Physics Program

First physics schedule (Partial TOP / 200-300 fb⁻¹):

Commissioning @ Y(4S) of course

 But physics is stat. limited (compared to Belle), high systematics on partial detector.

Alternative: Large **Unique** e⁺e⁻ data set studies @ Y(2, 3, or 5S)

•K/π separation not as crucial in bottomonium studies (Y(2S), Y(3S), Y(5S))

Neither is vertexing

Energy range for Super-KEKB: from Y(1S) to Y(6S)

Belle II Detector

K_L and muon detector: Resistive Plate Counter (barrel outer layers) Scintillator + WLSF + MPPC (end-caps, inner 2 barrel layers)

EM Calorimeter: Csl(Tl), waveform sampling (barrel) Pure Csl + waveform sampling (end-caps)

electron (7GeV)

Beryllium beam pipe 2cm diameter

Vertex Detector 2 layers DEPFET + 4 layers DSSD

> Central Drift Chamber He(50%):C₂H₆(50%), Small cells, long lever arm, fast electronics

Particle Identification Time-of-Propagation counter (barrel) Prox. focusing Aerogel RICH (fwd)

positron (4GeV)

Belle II Schedule

			2015						2016																
	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12
Global Operatio		(BE	No (Sol AST	QCS lenc E ph	No bid	1)		Sun	nme	r vn					w/ (Sole	QCS enoio	w/ d w/o	o VX	D	Sur	nme	r vn	"P R	hy ur	si "
		(_,		Ona	itao,							.,	pric		.,	ond					
Belle roll-out/ir								I I																	
Belle disassem																									
Belle Rotation																									
Pole piece moc design/fab	rication																								
constructio	n																								
QCS integratio																				rm					
QCS cooling te																									
Field measurer																									
IR magnets							rm												rm						
mongata shields							rm												rm						
Global Position					pit			On	Bear	m Li	ine			On	Bea	m Li	ne								
endcap							ac													0		С			
VXD installation																									
CDC installation																									
TOP installation																									
ECL	Eca	ip EC	L																						
ARICH		/	ARI	СН																					
BKLM																									
EKLM																									
Solenoid											Mea	asur	eme	nt	Bea	m							Bea	im	
ready on site		1	TOP1						PXD				TOP2												
-					CDC			BP2	SVD					VXD											
Einst now	auh da	to) t c	10		ר. ז+ר	.11	54	COMF Contr	COM read	ZT	٦.	/)												

First new sub-detector installed (B-KLM)

Start "physics run" from Oct. 2016 even with partial TOP **Slowly shifting from construction phase to integration phase**^{\circ}

Challenges on Belle II Upgrade

High Background (×10-20)

Radiation Hardness

Occupancy

Pile-up Noise

High Event Rates

Improved Performance

Vertex Reconstruction PID, Neutral particles Hermeticity

Smaller Lorenz boost factor is requiring finer vertex resolution BaBar p(e⁻)=9 GeV p(e⁺)=3.1 GeV Belle p(e⁻)=8 GeV p(e⁺)=3.5 GeV Belle II p(e⁻)=7 GeV p(e⁺)=4 GeV

High Speed ReadoutECLSVDCDC

KLM endcap/barrel

VXD assembly steps VXD design and assembly procedure (incl. BP) have agreed 1st set of mechanics parts will be delivered in March. (There are two options of installation method)

Heavy Metal shields

PXD ladder

-			-					,		-			í	1		1
												1	1.00		1	
Ħ	1	1		i	1	ł		1	1		-	ł		III	1	
						1	ļ				2.			1	1	

Switcher

Control of gate and clear 32 x 2 channels Switches up to 30V AMS 0.35 µm HV technology

DHP

Signal processor Common mode correction Pedestal subtraction O-supression Timing and trigger control TSMC 65nm (first version IBM 90nm)

DEPFET sensor

by Tscharlie Ackermann (MPI)

250 x 768 pixel 50μm x 55μm (min) 50μm x 80μm (max) 75μm thick

DCDB

Amplification and digitization of DEPFET signals 256 input channels 8-bit ADC per channel 92 ns sampling time UMC 180 nm

z = 0

EMCM: Electrical Dummy to be equipped with ASICs and tested like a real module

PXD ladder

DEPFET sensor First sensors will be available in October 2014 Production finished in June 2015

DCDB

Noise at 320MHz higher than at 100MHz Two types of chip have submitted DCDBv4 DCDBPipeline

Switcher

Only minor modifications needed (E.g. resize of the output driver for faster clear signal)

DHP

Conversion from IBM 90nm to TSMC 65nm completed **increased buffer size for higher rates**

Serializer works, but Vcc has to be adjusted to get full speed

1.4 V (nominal) => 60 MHz 1.6 V => 80 MHz (will be fixed by next submission)

Silicon Vertex Detector

Ladders

Latest version: Rev. 1.0 Ribs produced BWD end mounts & L3 bridges in production FWD sliding mech. under test

End rings

Actual design to be used for thermal mockup Some fine tuning required

CF cones, end flanges, shell First design exists Production ongoing

Design will be finished in March.

Ladder mass production is scheduled from July Parts and jigs preparation is ongoing

2014/3/3

SVD ladder production

Gluing and wire bonding

Alignment

Origami assembly

Final assembly

VXD beam test (PXD,SVD,DAQ)

VXD common test beam in January 2014 (4 weeks)

- Small sector of the close to final prototype detectors and ASICs
- 2 PXD half ladders + 4 SVD single module layers
- Complete VXD readout chain: HLT, monitoring, event building, PocketDAQ (Belle II DAQ downsized system)
- CO2cooling, slow control, environmental sensors
- Illumination with (up to) 6 GeV e under solenoid magnetic field
- Alignment, tracking algorithms, ROI for PXD readout

PXD6 on Hybrid 6

SVD Layer 3

Belle II DAQ

Region Of Interest

Before and After alignment

55192

0.0001687

0.01247

2.537

55192

4.093

0.0001096

Mean

RMS

Constant

Mean

Sigma 0.004485

Test Beam VXD DAQ

Alignment

Entries

Mean

RMS

Mean

55192

-9.625e-006

Central Drift Chamber

days

Cosmic ray test

- On the 1^{st} of July, 2013,
 - He/C₂H₆ (50/50)
 - flow rate 40 cc/min
 - apply HV of 2.0kV

we got the first signal!!

Major Issues for the TOP System and milestones

- Quartz Optics production rate, quality
- MCPPMTs production, lifetime
- GHz waveform digitizers (IRS ASIC) timing, stability
- Mechanics pristine environment for quartz, rigidity
- System performance beam test results, physics performance

MCPPM₁

DOE CD-2/3 review in March – final project review for production

Milestones

Validation of quartz specifications – February BPAC Validation of final board stack – End February 2014 CD-2/3 – IPR March 19/20; ESAAB in April Module 1 assembly – April 2014 Production orders of quartz – April 2014 IRSX validated – May 2014 Beam test of Module 1 – July 2014 ¹/40f modules completed – October 2014 ¹/2(+) of modules completed – March 2015 All modules completed – September 2015

TOP activities

35

ARICH beam test @DESY

No difference found in the detected number of photons.

Mass production

2013 Sep-2014 Sep.

• 140 HAPDs were delivered.

• Delivery of all HAPDs before 2014 Sep. is possible (as far as the present problem is solved).

Design of the final version in Apr.

Merger board collects data from 5 or 6 FE boards, and send them to DAQ through Belle2Link.

ARICH assembly and installation

Attach FE board to the HAPDs and then make a test [2014 Jul-Oct]

Mechanical structure (and supporting system) is now under construction and will be ready in Sep. 2014.

HAPD installation for one sector (sextant) [2014 Oct-].

- Monitor system should be installed first.
- Apply HV and guard for all 70 HAPDs and make a test.

Install mirror and outer cover

procedure

sectors.

Install Aerogels to the front cover.

Belle II ECL electronics

EKLM module assembly@ KEK

EKLM sensor replacement

Expected installation speed: 4 modules per day

Two modules were successfully installed in backward EKLM in May'13

Preamplifiers and carrier boards preparation are remaining issues

BKLM

Barrel KLM: Replace layer 0 and 1 RPCs with extruded-strip scintillator detectors within the same form-factor modules as the existing RPCs

1 dead channel found by test after installation (3000 channels)

or RPC module Integration test + Cosmic ray test is ongoing

BEASTII

BEAST phase 1 ~2015 Jan.

BG monitoring on vacuum scrubbing Belle is not installed

BEAST systems: 8 BGO crystals, 2 TPCs, 1-2 He-3 tubes, BEAST DAQ, PIN diode VXD test sensors

BEAST phase II ~2016 Feb.

No VXD detector BelleII DAQ test start without VXD Beam abort setting optimization BG study by BEAST sensors

PIN diodes / loss monitors: **TPCs:** fast neutrons

He-3 tubes: thermal neutrons

BGO for luminosity measurement Diamond sensor for VXD abort settings

New activity Data flow diagram(monitor)

Summary

- Installation of sub-detectors started (KLM)
- Sub-detectors will be installed by June 2015; roll-in in July 2015

– (other than VXD system, part of TOP)

Schedule is tight for VXD (SVD ladder, PXD sensor) and TOP (quartz production)

Belle II Collaboration

20 countries, 70 institutes, ~450 collaborators in 2013

End-Cap KLM

Highlights since last review

- Belle Rotation (Mar.)
- Belle roll-out (May)
- B-KLM module installation successfully completed (Nov.)
- CDC wire stringing completed (Jan.)
- VXD beam test at DESY (Jan.)

Belle II detector (inside of KLM)

Schedule in Tsukuba Exp. Hall : 1 year from now

						2014				2014	Feb -	2015
	2	3	4	5	6	7	8	9	10	11	12	1
E-KI	LM as	sembl	У		→							
Belle	E-KL (FW	.M ins D)	tallati	on	E-KL (BWI	M inst D)	allati	on				
			ECL e insta (Barı	electro Ilatio rel)	onics n and	cabli	ng	EC in (E	L eleo stalla ndcal	ctroni tion a 9)	cs nd ca	bling
КЕКВ	QCS	bridg IR	e rail i stage	instal instal	lation llatior	(L-si	de)	IR cha	vacui ambe	um r	Pha ope	ase 1 eratio
					IF	mag	net					
Cryo.	1				in	stalla	tion	So		l exci	tation	

Construction Schedule

[2013]

• KLM installation: ~Jun. 2014

[2014]

- ECL barrel electronics installation: Apr.– Aug. 2014
- ECL endcap electronics installation: Dec. 2014– Mar. 2015

[2015]

- ARICH installation: Feb.–May 2015
- Endcap ready for installation: summer 2015
- TOP installation: Feb–Mar. 2015
- CDC installation: Apr–May. 2015
- SVD/PXD ready at KEK: Aug. 2015
- VXD integration, ready for installation: autumn 2015
- Belle II DAQ integration, commissioning, ...

PXD: Production

PXD

2014/3/3

42

drain

PXD sensor Production

Production phases phase 1

- -implantations
- oxide/nitride depositions
- polysilicon deposition

phase 2

- metal 1 (alu)
- insulation oxide/contacts
- metal 2 (alu)

phase 3 (outside main cleanroom)

- thinning
- BCB insulation
- copper
- BCB passivation

p1 is the most time consuming ~250 days p2 is the most critical in terms of yield

31 wafers are processed in 3 batches Minimum yield needed: Inner layer: 26%; Outer layer; 20%

Test metal system with EMCM

EMCM: Electrical Dummy to be equipped with ASICs and tested like a real module

Allows tests of the electrical performance

- routing errors (despite automatic checking tools)
- cross talk, voltage drops, RC delays

Test network before ASIC bonding: 4055 pads to test, 2149 independent electrical nets >100 k individual tests to be made!

After EMCM study

First sensors will be available in October 2014 Production finished in June 2015

DAQ & Trigger

PID: TOP counter

Simulation

2GeV/c, θ=90 deg.

E-PID: Aerogel RICH

- Dveloped with Hamamatsu
 - 144 channel, 5mm × 5mm/pixel

Energy Frontier vs Flavor Physics

New Physics Prospects

Complemantarity

Super B factor	ry
LHCb	
K experiments	3

- theory uncertainty matches the expected exp. precision
- theory uncertainty will match the expected exp. precision with expected progress in LQCD

G. Isidori et al., Ann.Rev.Nucl.Part.Sci. 60, 355 (2010)

Observable	SM	Theory	Present	Future	Future
	prediction	error	result	error	Facility
$ V_{us} [K o \pi \ell \nu]$	input	$0.5\% \rightarrow 0.1\%_{\rm Latt}$	0.2246 ± 0.0012	0.1%	K factory
$ V_{cb} $ $[B \rightarrow X_c \ell \nu]$	input	1%	$(41.54\pm0.73) imes10^{-3}$	1%	$\operatorname{Super-}B$
$ V_{ub} $ $[B ightarrow \pi \ell \nu]$	input	$10\% \to 5\%_{\rm Latt}$	$(3.38\pm0.36) imes10^{-3}$	4%	Super-B
$\gamma \qquad [B \rightarrow DK]$	input	$< 1^{\circ}$	$(70^{+27}_{-30})^{\circ}$	3°	LHCb
$S_{B_d \to \psi K}$	$\sin(2\beta)$	$\lesssim 0.01$	0.671 ± 0.023	0.01	LHCb
$S_{B_s \to \psi \phi}$	0.036	$\lesssim 0.01$	$0.81\substack{+0.12\\-0.32}$	0.01	LHCb
$S_{B_d \to \phi K}$	$\sin(2\beta)$	$\lesssim 0.05$	0.44 ± 0.18	0.1	LHCb
$S_{B_s \to \phi \phi}$	0.036	$\lesssim 0.05$		0.05	LHCb
$S_{B_d \to K^* \gamma}$	fev \times 0.01	0.01	-0.16 ± 0.22	0.03	Super- B
$S_{B_s \to \phi \gamma}$	few \times 0.01	0.01		0.05	LHCb
$A^d_{ m SL}$	$-5 imes10^{-4}$	10^{-4}	$-(5.8\pm3.4) imes10^{-3}$	10^{-3}	LHCb
$A^s_{\rm SL}$	$2 imes 10^{-5}$	$< 10^{-5}$	$(1.6\pm 8.5) imes 10^{-3}$	10-3	LHCb
$A_{CP}(b ightarrow s \gamma)$	< 0.01	< 0.01	-0.012 ± 0.028	0.005	Super- B
${\cal B}(B o au u)$	1 - 10-1	$20\% \to 5\%_{\rm Latt}$	$(1.73\pm0.35) imes10^{-4}$	5%	$\operatorname{Super-}B$
${\cal B}(B o \mu u)$	4	$20\% \to 5\%_{\rm Latt}$	$< 1.3 \times 10^{-6}$	6%	Super- B
${\cal B}(B_s o \mu^+ \mu^-)$	$3 imes 10^{-9}$	$20\% \to 5\%_{\rm Latt}$	$< 5 imes 10^{-8}$	10%	LHCb
${\cal B}(B_d o \mu^+ \mu^-)$	$1 imes 10^{-10}$	$20\% \to 5\%_{\rm Latt}$	$< 1.5 imes 10^{-8}$	[?]	LHCb
$A_{\rm FB}(B\to K^*\mu^+\mu^-)_{q_0^2}$	0	0.05	(0.2 ± 0.2)	0.05	LHCb
$B o K u ar{ u}$	4×10	$20\% \to 10\%_{\rm Latt}$	$< 1.4 \times 10^{-5}$	20%	Super-B
$ q/p _{D-{ m mixing}}$		$< 10^{-3}$	$(0.86^{+0.18}_{-0.15})$	0.03	Super-B
ϕ_D		$< 10^{-3}$	$(9.6^{+8.3}_{-9.5})^{\circ}$	2°	Super-B
$\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})$	8.5×10^{-11}	8%	$(1.73^{+1.15}_{-1.05}) \times 10^{-10}$	10%	K factory
${\cal B}(K_L o \pi^0 u ar u)$	2.6×10^{-11}	10%	$<2.6\times10^{-8}$	[?]	K factory
$R^{(e/\mu)}(K o \pi \ell \nu)$	2.477×10^{-5}	0.04%	$(2.498\pm0.014) imes10^{-5}$	0.1%	K factory
${\cal B}(t o c Z, \gamma)$	$\mathcal{O}\left(10^{-13}\right)$	$\mathcal{O}\left(10^{-13}\right)$	$< 0.6 imes 10^{-2}$	$\mathcal{O}\left(10^{-5}\right)$	LHC $(100 {\rm fb}^{-1})$
$B(B \rightarrow X_{s}\gamma)$ $B(B \rightarrow X_{d}\gamma)$ $S(B \rightarrow p\gamma)$ $B(\tau \rightarrow \mu\gamma)$ $B(B^{+} \rightarrow D\tau\nu)$				6% 20% 0.15 3 ·10 ⁻⁹ 3%	Super-B Super-B Super-B Super-B 90% Super-B
$B(B_s \rightarrow \gamma \gamma)$ sin ² θ_W @ Y(4S)			0	.25 ·10 ⁻⁶ 3 ·10 ⁻⁴	Super-B 5 ab ⁻ Super-B