Magnet Support (Moving stage/ KEKB floor modification)

H. Yamaoka

and

Magnet group

Mechanical design

Load conditions (Vertic	<u>cal dir.)</u>		
Self-weight (QCS):	2500kg		
Self-weigh(Supp. Frame):	10000kg		
Weight of magnets:	4000kg		
Magnetic force(axial dir.)			
Inner direction:	7000kg		
Outer direction:	4000kg		
Seismic load			

0.3G in the horizontal direction

→ Assembling is in progress...

KEKB concrete floor modification

KEKB concrete floor modifications

L-side

We apply self-leveling method.

- Improve vibration property.

Set steel rods

Dec.11, Fill with concrete

工事名称 Super KEKB用面突点移動探告基础 施工者 (時)日立テクノロジーアンドサービス 打設年月日25年/2月//日立会者 团开 打込箇所 · . 上创, R创 設計強度 品質強度 「「び強度」スランプ 骨材寸法 セメント コンクリート配合 33 18/20/N 94 スランプ 26,5 ㎝ 空気量 測 実 6 14 ℃ 外気温度 コンクリート温度 r フロー値 No. 0.06 塩化物量測定 kg/m3 ±31 18/3 (株)建材サービスセンター 社

Dec. 07, High precision flat surface floor (Self-leveling method)

Modal test of concrete bridge

Vibration properties must be changed due to the modifications. →Resonant frequencies →Mode shapes are measured and compared to FEM.

Jan. 6,7th ,Flatness of the floor was measured.

Laser tracker

Result (Measured with Laser Tracker)

				L	Init: mm	L,	
	200	500	1000	1500	1800		
0	0	0.02	-0.029	-0.033	-0.058		
500	-0.017	-0.008	-0.06	-0.045	-0.045		
1000	-0.043	-0.096	0.011	-0.021	-0.02	-0.2	250
1500	0.008	-0.034	0.011	-0.06	-0.033	0.1	2004
2000	0.021	-0.011	0.011	-0.019	-0.038	-0.1	758
2500	-0.018	-0.005	-0.008	-0.074	-0.05	-0.1	512
3000	-0.041	-0.015	-0.014	-0.066	-0.056	-0.1	266
3500	-0.018	-0.022	-0.035	-0.04	-0.061	-0.1	020
4000	-0.028	-0.005	-0.04	-0.017	-0.05)7740
4500	-0.015	-0.036	-0.028	-0.092	-0.081	-0.0)5280
5000	-0.022	-0.024	-0.008	-0.016	-0.04	-0.0)2820
5500	-0.046	-0.057	-0.04	-0.047	-0.055	-0.0)03600
6000	-0.046	-0.039	-0.03	-0.046	-0.041		2100
6500	-0.061	-0.045	-0.047	-0.033	-0.045	300 00	
7000	-0.054	-0.068	-0.082	-0.078	-0.074	60 ¹ 10 ¹⁰	
7500	-0.087	-0.086	-0.081	-0.097	-0.086	<u>ଙ</u>	
8000	-0.113	-0.106	-0.125	-0.131	-0.08		

→ Flatness is about less than 0.1mm.

Conclusion

Present situation

At KEK @ Mar. 3rd -Modification of the floor is completed. -Waiting to install the movable table.

At factory of fabricator; -Assembling is in progress...

Assembling in KEK,→ Middle of March.

Modal test

DICINA

Output

Input

Ζ

Operational Modal Analysis

Y

From Wikipedia, the free encyclopedia Ambient modal identification, also known as Operational Modal Analysis (OMA), aims at identifying the modal properties of a structure based on vibration data collected when the structure is under its operating conditions, i.e., no initial excitation or known artificial excitation. The modal properties of a structure include primarily the natural frequencies, damping ratios and mode shapes.