

Masanori Satoh (Accelerator Laboratory, KEK) for the Injector Linac Commissioning Group

The 20th KEKB Accelerator Review Committee, Feb. 23-25, 2015

Contents

- 1. Injector upgrade overview
- 2. Energy spread/low emittance preservation
- 3. Simultaneous top-up for 4-rings
- 4. Progress of injector commissioning
- 5. Issues
- 6. Summary and plan

Injector upgrade overview

- Low emittance photo-cathode rf gun
 - e-: 1 nC, 100 mm·mrad (KEKB) => 5 nC, 20(H)/50(V) mm·mrad (SuperKEKB)
 - e+: 1 nC, 2100 mm·mrad (KEKB)=> 4 nC, 20(H)/100(V) mm·mrad (SuperKEKB)
 - Component alignment and fine beam control for low emittance preservation
- New positron capture system (Flux concentrator, Large aperture S-band structure), and damping ring
- New timing system (bucket selection for DR/MR)
- Fast RF monitor, high precision BPM readout and other new subsystems
- Simultaneous top-up injection
- Main ring commissioning Phase-I: Jan. of 2016
 - e-/e+ 1nC w/o low emittance

Energy spread requirement

- Energy spread should be less than 0.1%.
- Uniform beam distribution is necessary for mitigation longitudinal wakefield and reduce energy spread.
- Temporal manipulation of laser system

Emittance growth due to component misalignment

- Simulation results from 100 different seeds. ullet
- Misalignment of Quadrupole magnets and Accelerating structure: igodot
 - $\sigma < 0.1$ mm: βγε 20 mm·mrad is almost satisfied. •

<Emittance growth> • quadratic curve as a function of misalignment final emittance depends on error

Simulation

SAD code, Elegant Initial bunch charge: 5 nC Initial emittance: 6 mm·mrad Initial bunch length: 10 ps (FWHM) Initial energy spread : 0.4% Initial beam energy: 20 MeV Uniform longitudinal beam distribution

Offset injection for emittance preservation

- Low emittance e- beam transport w/o damping ring
- Emittance preservation is key issue for e- beam.
- Offset injection: intentional change of misalignment seed.
- Control the steering magnet at the beginning of Sector C

- Kick angle is relatively small.
- Need a high-precision and stable orbit control.

Emittance w/ bunch charge fluctuation

- Emittance simulation w/ 10 misalignment seeds (accelerating structure).
- SectorC to Sector5 (Linac end)
- Assuming 5 nC, initial emittance of 10 mm·mrad (SectorC)
- When bunch charge increases by 10%, emittance increases by 6.5%.
- Try simulations w/ measured component misalignment, dynamic beam line movement, energy jitter.

BPM readout system

- Current system:
 - Windows-based digital oscilloscope
 - 10 GSa/s, 8 bit, 1 GHz bandwidth, 4 channels
 - Twenty four systems process: 90 BPMs
 - Position measurement precision: $25 \sim 50 \ \mu m \ (3-BPM)$
- New system:
 - VME module w/ band-pass sampling scheme
 - 250 MSa/s, 16 bit ADC,
 - BPF (fc: 180 MHz, BW: 60 MHz, 22 MHz)
 - Signal can be well damped within 80 ns
 - Meas. precision: 3 µm
 - \sim 100 modules under pre-delivery inspection

5

e-/e+ beam fast switching (SuperKEK

- Positron production target with a hole (e- beam pass through inside a hole)
- A hole is at the center of beam line for low emittance e- beam.
- Same scheme was successful in KEKB operation.

target offset & beam hole

Simultaneous top-up injection for three rings

- PF-AR injection (twice daily) interrupt KEKB injection.
- Big issue for SuperKEKB operation.
- Beam lifetime ~ 6 min.

Simultaneous top-up including PF-AR injection

- PF-AR and KEKB share the long part of beam transport line.
- Existing tunnel space is very tight.
- New tunnel has been constructed in Mar. of 2014.
- Pulsed bend will be installed at #3 switch yard of Linac.
- New BT will be available in Jan. of 2017.

Injector commissioning

- Injector commissioning has been started in Oct. of 2013.
 - Oct. and Dec. of 2013 (e+ beam line construction in Nov.)
 - Apr. \sim Jun. of 2014
 - Oct. \sim Dec. of 2014
 - Commissioning (Jan.-Mar. of 2015) was canceled. (operation budget)
 - Day shift: beam line construction, laser tuning
 - Evening shift: beam study
 - Early morning shift: beam study, rf conditioning

Injector Commissioning

Bunch charge from rf gun in last Dec.

Beam orbit example

- During commissioning, 3T gun continuously provides e- beam for PF ring (top-up).
- Full Linac study can be conducted in Wednesday.
- PF dedicated magnet settings are used in Sector3 Sector5
- RF Φ can switched in pulse-by-pulse (LLRF Φ control)

Typical beam charge stability

Bunch charge and laser power

- Bunch charge (1st BPM) as a function of laser power.
- Clear correlation between them

Bunch charge fluctuation

- Bunch charge fluctuation as a function of bunch charge (2D histogram)
- Oct. of 2013 Dec. of 2014

Beam position measurement diagnostics

- \bullet
 - BPMs x 90 (strip-line type electrodes)
- Beam profile/Emittance measurement \bullet
 - Fluorescent screen monitors x100
 - Single wire scanner x1
 - Multiple wire scanner x5
- Bunch length measurement ٠
 - Streak camera x3

Emittance measurement

- Emittance as function of bunch charge (drop the results w/ large error)
- Small bunch charge (< 1 nC) shows good emittance at injector section.
 - <10 mm·mrad (Vertical), <15 mm·mrad (Horizontal)</p>
- Results at SectorB show larger emittance than our goal.

Offset Injection (experiment)

- Feasibility of offset injection was studied w/ bunch charge of 0.3 nC.
- Changing the excitation current of steering magnet at Unit-A4.
- Emittance was measured multiple wire scanner at SectorB end.
- We will conduct this measurement w/ various bunch charges.

Accum Time

Search nulse :

Input Optic: Focus :

🗟 Grauitu Inter

Streak Mode 1[NS] Streak Trigger SINGLE X:-0.480 Y:-28.546 Z:-5.710 **BC** Calibration **BN** DATE 2014:03:02 TIME 82:42:44

Sween Banne 83ns

<< Condition : ReamC1587_C1 Accum Time 188 pulse Mcp Gain 88[%]

🚐 100 pul: Control the Streak Camer

> 80 212.63

> > 500 cn1

⊖ 100 🛛 um

Bunch compression (a) J-ARC

- Isochronous (w/o bunch compression), $R_{56} = -0.3 \text{ m (w/ bunch}$ \bullet compression) w/ different RF Φ in SectorA/B
- Clear bunch compression has not yet been measured. igodol
- Emittance measurement by multiple wire scanner at Sector2 w/ and \bullet w/o J-ARC bunch compression.

e+ beam measurement

- First e+ beam was measured by current system at Jun. 9th 2014.
- Primary e- beam charge: 0.5 nC
- e+ charge: 0.02 nC @ SP_28_4

R16, R36 elements at J-ARC

- R16, R36 values were measured at J-ARC and SectorC.
- w/ and w/o fudge factors (B' = $A_{fudge} \times B'_{model}$)
- Find suitable fudge factors
 - $-\,$ Typical fudge factors used for KEKB operation are $1\%\sim 5\%.$

Beam loss at first acc. structure F [mm] 2 AC AL 2 /S_A1_M GV A1 RG x (mm) 0 ă SP_A1_C5 -2 BX A1 C5 1_M Chicane SC SC A1 2 SP A1 2 SP A1 SC_A1_1 -2 BM A1 C4 SX_A1_21 OF A1_12 SX A1 1 BM A1 C2 -4 SX [A] SY_A1_21 BM A1 C1 B 0 BY_A1_C5 D A1 13 0 SX SC_A1_C5 Solenoid Coil -5 Έ Beam transmission rate is reduced at 2nd [mm] 2 ٠ 0 y (mm) -2 BPM (downstream 1st accelerating à -2 structure) when bunch charge from gun -4 SV [A] 5 0 increases. ₹ -5 S To improve it, 1st accelerating structure • -5 ក្រ 1.5 will be removed soon. I (nC) 0 3 0 0.5 9 Oe 2 0 0 _B6_4 B4 84 8 87 ß Ē Range 1 (nC) 4 (nC) 28

v0.6

niection Pattern

2009/04/26 19:48:23

Timing system

- Event generator (EVG)/Event receiver (EVR) based on VME64x. (Micro- \bullet **Research Finland**)
- EVG (EVG-230) x1, EVR (EVR-230RF) x24 \bullet
- Arbitrary injection pattern can be set via HLA. ullet

Beam injection study

(new timing system configuration)

- PF/PF-AR injection study were conducted w/ new EVG configuration and software.
- Beam orbit and injection rate is quite similar between current and new system configuration.
- Wire scanner/BPM works well.
- Long-term stability will be tested after this Apr.

Unit A1 (reconfiguration)

- Thermionic e- gun will be temporarily back in end of this Apr. (for radiation control license and e+ primary e- generation of 10 nC)
 - Keep the beam line for rf gun in current position.
 - Beam line level of beam line will be changed from 1200 mm to 1950 mm.
 - Spare magnets will be used for new beam line.
- Thermionic e- gun commissioning will be started in early May.

Optics design

- Quadrupole triplets will be installed in merger line.
- Beam size is not so large in comparison with bore radius of vacuum chamber .

• Injector commissioning

- Oct. and Dec. of 2013/ Apr. $\sim\,$ Jun. of 2014/ Oct. $\sim\,$ Dec. of 2014
- Not enough time for commissioning
- e+ commissioning:
 - Installation of flux concentrator delayed from Dec. of 2013 to May of 2014.
 - Twice accidents in Dec. of 2013 and Dec. 2014 (cable burned)
 - First e+ beam was measured in Jun. of 2014.
 - Progress of LAS rf conditioning is slow.
 - Not enough primary e- bunch charge at target ($\leq 1 \text{ nC}$)
- e- commissioning:
 - Discharge of rf gun cavity. Not enough power for rf gun cavity (12 MW/20 MW)
 - Shot-by-shot beam stability of charge and position/angle from gun is not yet enough. Difficulty to keep the high bunch charge in long term period.
 - Beam loss at Unit-A1 (chicane) and J-ARC

Summary and Plan

- Beam commissioning w/ A1 rf gun started in Oct. of 2013.
 - Not enough time for commissioning
 - 5.6 nC (from rf gun), 0.75 nC (Linac end)
 - Stability is still issue. (Shot-by-shot and long term)
- Unit-A1 reconfiguration will be completed before end of Apr. Thermionic e- gun commissioning in May.
- Beam commissioning w/ thermionic e- gun (May, June)
 - Measure Quadrupole center to BPM center offset
 - Reduce beam loss at Unit-A1/J-ARC
 - Development of commissioning tools and tests (beam based alignment/ emittance preservation)
 - Pulsed Quads (x2) and steering (x2) will be tested in Sector2.
- Prepare stable e-/e+ beams (1 nC w/o low emittance) before MR commissioning Phase-I.

e- beam parameters

	SuperKEKB	KEKB
Energy (GeV)	7.0	8.0
HER stored current (A)	2.6	1.1
HER beam lifetime (min.)	6	200
Maximum beam repetition (Hz)	50	50
Max. # of bunch in an rf pulse	2	2
Emittance (mm·mrad)	50/20 (Hor./Ver.)	100
Charge (nC)	5	1
Energy spread (%)	0.1	0.05
Bunch length σz (mm)	1.3	1.3
Damping ring	-	-
Simultaneous top-up injection	4 rings (SuperKEKB e-/e+, PF, PF-AR)	3 rings (KEKB e-/e+, PF)

e+ beam parameters

	SuperKEKB	KEKB
Energy (GeV)	4	3.5
LER stored current (A)	3.6	1.6
LER beam lifetime (min.)	6	133
Maximum beam repetition (Hz)	50	50
Max. # of bunch in an rf pulse	2	2
Emittance (mm·mrad)	100/20 (Hor./Ver.)	2100
Charge (nC)	4	1
Energy spread (%)	0.07	0.125
Bunch length σz (mm)	0.7	2.6
Damping ring	0	-
Simultaneous top-up injection	4 rings (SuperKEKB e-/e+, PF, PF-AR)	3 rings (KEKB e-/e+, PF)

Design drawing of A1 beam line

Injector Commissioning

Shot-by-shot beam profile stability

Beam position stability @ SP_A1_C5

- Measured beam position at first BPM (SP_A1_C5)
 - $\sigma x \sim 0.57 \text{ mm}$
 - $~\sigma y \sim 0.11~mm$
- Fluctuation of horizontal beam position is larger than vertical one.

Emittance measurement example (Unit-A1)

- Quadrupole scan
- Screen monitor at chicane

- Multiple wire scanner at the end of Sector B
- Typical result (1 nC):
 - $\epsilon_{n,x}$: 66.006 ± 10.755 mm·mrad
 - $\epsilon_{n,y}$: 77.309 ± 14.522 mm·mrad
- Charge stability is not so small. Software is under development for subtracting shot-by-shot beam fluctuation.

Emittance measurement

- Emittance of rf gun and SectorB were measured by Quad scan and multiple wire scanner, respectively.
- Results measured in Nov. and Dec. of 2014.
- Vertical emittance is smaller than horizontal one.

Two bunch operation example

Profile monitor

- Screen material is made of 99.5% Al2O3 and 0.5% CrO3 (AF995R, Demarquest Co.). (t: 1 mm)
- Linux/PLC (x31) control profile monitor (insert/remove, video signal select, limit switch, LED illumination, pneumatic air pressure).
- EPICS IOC is running on Linux/PLC. HLA is implemented by Python.

- Profile monitor (cont'd)
 7/97 were replaced by 30-µm-thick one for precise beam size/emittance measurement (Quadrupole scan)
- CCD cameras have been replaced by new one.
 - Allied Vision: GC650 w/ GbE
 - Ext. trigger input
 - EPICS IOC, CSS for HLA

Energy spread measurement @ J-ARC

- Measure beam energy spread by screen monitor (middle of J-ARC) w/ and w/o bunch compression at A1 chicane.
- Bunch compression at A1 unit is effective for energy spread compensation.

Summary of e- commissioning

Item	Requirement	Current status
Beam charge (nC)	5 (10 for e+ primary)	5.6 (first BPM) 0.58 (Linac end)
Beam energy (GeV)	7	7
Normalized emittance (mm·mrad)	50/20 (Hor./Ver.) (at the end of Linac)	20/7 (Hor./Ver.) (from RF gun)
Bunch charge stability	2.5% (KEKB), 1% (PF/PF-AR)	10% ~ 20%
Bunch compression (Unit-A1)	30 ps => 10 ps	30 ps => 10 ps
Bunch compression (J-ARC)	10 ps => 5 ps	n/a
Temporal manipulation of laser	Uniform shape	n/a
Emittance preservation	20 mm·mrad (Linac end)	n/a
Max. beam repetition	50	25
# of bunches	2	2
Operation	Simultaneous top-up	n/a
	49	