NORMAL-CONDUCTING RF CAVITIES FOR SUPERKEKB / MR & DR

Tetsuo ABE

(<u>MR</u>: <u>M</u>ain <u>R</u>ing <u>DR</u>: <u>D</u>amping <u>R</u>ing

For SuperKEKB-RF / ARES-Cavity Group (T. Abe, T. Kageyama, H. Sakai, Y. Takeuchi, and K. Yoshino)

The 21th KEKB Accelerator Review Committee Meeting 2016-06-13

Contents

- RF cavities for the Main Rings (MRs) ("ARES")
 - Introduction
 - Operational status in Phase 1
 - Two serious troubles
- RF Cavities for the Damping Ring (DR) ("DR Cavity")
 - Introduction
 - Results of the performance tests

ARES for the MRs

NC RF Cavity System for SuperKEKB (<u>ARES</u>) (<u>A</u>ccelerator <u>R</u>esonantly coupled with <u>E</u>nergy <u>S</u>torage) -- Three cavity system stabilized with the accelerating π/2 mode --

Three Main Characteristics of the ARES Cavity System

- 1. Large Storage Cavity (SC)
 - Optimum detuning suppressed by $U_s/U_a(=9) = -\frac{P_b \tan \phi_s}{4\pi U}$
 - SC acts as an electromagnetic flywheel.
 - $\Delta f_{\pi/2} = \Delta f_a / (1 + U_s/U_a) = \Delta f_a / 10 < f_{rev}$ $- \Delta f_a = -200 \text{kHz} (\text{KEKB design}), -280 \text{kHz} (\text{SuperKEKB design})$ $- f_{rev} = 99 \text{kHz}$
 - Therefore, coupled bunch instabilities (CBIs) driven by the accelerating mode are suppressed (Appendix A).

2. $\pi/2$ -mode operation

- Stable against the detuning and deformation
- The stored-energy ratio: U_s/U_a changeable

$$\succ U_{s}/U_{a} = k_{a}^{2}/k_{s}^{2}$$

- Parasitic 0 and π modes
 - Damped selectively out of CC by an antenna-type damper ("<u>Coupling-Cavity Damper</u>")
 - \blacktriangleright Have a almost symmetric impedance w.r.t. $f_{\rm RF}$

3. Hybrid HOM-Damped Structure

Explained in the next page

SC : Storage CavityCC : Coupling CavityAC : Accelerating Cavity5

The ARES has -- Two-types of HOM-Damped Structures. --

To suppress CBIs driven by HOMs (Appendix A)

Type_1: HOM WG (HWG)

✓ Bullet-shaped SiC ceramics✓ Directly water-cooled

Type_2: Grooved Beam Pipe (GBP)

Modes in RF Cavities," KEK-PREPRINT- 91-133, 1991.

∡^{Tuner} Port Two SiC bullets per Waveguide CC (AC) HOM absorber Note: uner Port No HWG in the horizontal direction due to the (H)CC GBP beam Fight SiC tiles per Groo HCC **TE**₁₀ ✓ SiC ceramics tiles ✓ Indirectly water-cooled For damping For damping ✓ Horizontally-polarized dipole modes ✓ Monopole HOMs ✓ Vertically-polarized dipole modes T. Kageyama, "Grooved Beam Pipe for Damping Dipole

6

Upgrade of the ARES for SuperKEKB

(Selection)

High-Power Input Coupler / Performance Upgrade

Upgraded Input Coupler Increasing the Input Coupling Factor

Input couplers with increased input coupling ($\beta_{max} = 5 \rightarrow 6$) needed for the stations with the N_{klvs}:N_{cav}=1:1 configuration to accelerate beams with the design current.

Used at the KEKB/MRs

With increased input coupling for the SuperKEKB

The high-power performance was demonstrated both at the test stand and <u>in the KEKB operation</u>.

ARES Cavity System / Upgraded Input Coupler / Production & Processing

 \checkmark For the first two production couplers, stable power feeding was demonstrated

 \blacktriangleright Up to P_{input} = 800 kW (= 750 kW + 50 kW) at the test stand.

✓ So far, 13 couplers have been processed up to 750-800 kW.

The same shown in the last report

 $\checkmark\,$ As of June, 2016, 5 couplers are waiting for high power test.

 $P_{input} = 850 \text{ kW}$ (= 750 kW + 100 kW) to be demonstrated (after Phase 1)

(Max. RF power stably supplied by the high power source)

- ✓ All the Input couplers for N_{Klys}:N_{Cav}=1:1 stations in OHO D4&D5 have been replaced by upgraded couplers.
- ✓ One coupler has been replaced by an upgraded one for one of the FUJI D8 stations.
- ✓ For other N_{Klys}:N_{Cav}=1:1 stations, to be replaced before starting Phase 2.

Two ARES Cavities Newly Installed in OHO D4-E,F

Crack found on the welding lip of the D4-F Cavity

→ Vacuum sealing impossible with lip welding

Sealed with a O-ring (non-metal)

→The vacuum pressure in this cavity is one order of magnitude higher than others.

To be fixed after Phase 1

Monitoring ALL the Cavities with TV Cameras

Example of the Recorded Videos

- ✓ D5-B cavity
- ✓ Vacuum interlock activated with RF input power of 60 kW during

Useful for isolating problems caused by input couplers (Note: Input couplers are removable.)

Operational Status of the ARES in Phase1

Operation Summary in Phase 1

Successful operation except for

Two serious troubles

	Area		ОНО									FUJI																			
	Station	D4	I-A	D4	1-C	D4-E	D4-F	D4-G	D4-H	D5-A	D5-B	D5-C	D5-D	D5-E	D5-F	D7	/-A	D	7-B	D7-C	D7-D	D	7-Е	D	3-A	D	3-B	D8-C	D8-D	D8	-E
0	Cavity	#1	#2	#1	#2	#1	#1	#1	#1	#1	#1	#1	#1	#1	#1	#1	#2	#1	#2	#1	#1	#1	#2	#1	#2	#1	#2	#1	#1	#1	#2
	HER operation																														
As of 2016-06-07	LER operation									Off	Off										Off								Off		
	Operating Vc [MV/cav]	0.39	0.39	0.39	0.39	0.33	0.33	0.34	0.34	-	-	0.32	0.32	0.32	0.32	0.45	0.45	0.45	0.45	0.45	2.73	0.45	0.45	0.45	0.45	0.45	0.45	0.45	~	0.45	0.45
	Vac. press. [Pa]	10^-7	10^-7	10^-7	10^-7	10^-6	10^-6	10^-6	10^-6	10^-6	10^-6	10^-6	10^-6	10^-6	10^-6	10^-7	10^-7	10^-7	10^-7	10^-7	10^-7	10^-7	10^-7	10^-7	10^-7	10^-7	10^-7	10^-7	10^-7	10^-7	10^-7
	Input Coupler	Used	Used	Used	Used	New	New	New	New	New	New	New	New	New	New	Used	Used	Used	Used	Used	Used	Used	Used	Used	Used	Used	Used	Used	New	Used	Used
(E :	Cav. Breakdown																										İ				
6-06-0 due to	Vac. press. rise												1										1						See p.21	1	
201 orts	Arc Coupler															1							1 1								1
01 to m Abc	Coupling-Cav. Damper Power																						1	2	1	1				3	2
02- Bea	Tuner Trouble																														1
(2016-1 # of E	Chiller Trouble						-																			(See	3 p.23)				
	Remarks					New inst.	New inst.; Using Oring	Old E #1,#2 Had s multip prol repor the KE Rev	04-C- 2 cav.; bacting blem ted in 10th KB view	STB powe	Y for r sav.										Circ. water leak										

Vacuum Trouble of the D8-D Cavity

Vacuum-pressure behavior for the ARES D8-D cavity, plotted together with the RF input power.

(T. Kageyama)

Vacuum Trouble of the D8-D Cavity

- The ARES cavity D8-D at the FUJI RF section for LER could not be operated due to abnormal vacuum pressure rise, sometimes observed other than during the RF operation.
- The gas source may be some subsurface defects, possibly between the copper plating layer and the carbon steel structure of the storage cavity.
- Now detuned \rightarrow out of operation

<Notes>

✓ Successful operation at KEKB

✓ No vacuum break since KEKB

- Plans toward Phase 2:
 - Plan A: hopefully locate and remove the defects in situ, followed by high power testing for confirmation.
 - Plan B: replace this ARES cavity by a spare one.

Other Serious Trouble: Chillers for RF Windows

- ✓ Object to be cooled: RF Ceramic Windows
- ✓ Coolant: water + antirust(5%), pH: 6 to 7 %
- \checkmark Coolant pressure: 0.2 to 0.3 MPa (< 0.4 MPa)
- ✓ Put in the sub-tunnel (not seen from the beam)
- \checkmark No trouble related to the chillers used at KEKB

(Further details on the chillers are described in Appendix C.)

During Phase 1 Operation

Example of the filters with small amount of precipitates \rightarrow

We observed precipitates growing in the coolant.

- Especially in the FUJI D8 stations
- Triggered LER beam aborts at D8-B (3 times)
 - > The flow rate of the coolant decreased with precipitates.
- Principal component : para tertiary butyl benzoic acid
 > Widely used as antirust
- Temporary treatment
 - Cleaning the filers
 - Replacement of the coolant by new one
- Measures toward Phase 2
 - Understanding of the chemical process of the precipitate creation (on-going)
 Including basic test (beaker test)
 - Sealing the reservoir tanks against the (activated) air in the tunnel
 - > From the basic test (beaker test) with H_2O +antirust(5%)+Cu+Mo
 - Precipitates created in the beaker open to the air
 - No precipitates created in the beaker sealed against the air
 - Monitoring of pH of the coolant during operation

Example of the filters with huge amount of precipitates

pH and Water Solubility

pH of the coolant in each chiller

Water solubility of the antirust

- 12600 mg/L at 20degC (pH7)
- 47.1 mg/L at 20degC (pH4.3)

(K. Yoshino)

RF Cavities for the DR ("DR Cavities")

NC RF Accelerating Structure for the DR

The blue, gray, green, and magenta regions indicate a vacuum, HOM absorbers, coaxial lines of input couplers, and plungers of movable tuners, respectively.

The colored arrows indicate the direction of the positron beam.

- RF operating frequency: 508.9 MHz
 - Same as that of the MRs
- Based on the HOM-damped structure of the successful ARES cavity system
- Three cavities at max. to be installed in a limited space originally designed for one cavity (3.8 m in the beam direction, excluding the taper sections)
 - Total $V_c = 2.4$ MV at max. with 0.8 MV/cavity
- Apart from the CC and SC of the ARES, this DR cavity has the following space saving features that are not included in the ARES:
 - The HOM absorbers are all compact tile-shaped SiC ceramics;
 - The neighboring cavities share a GBP in-between; and
 - The cavity is connected directly to GBPs with lip welding for vacuum sealing at the outer periphery ("weld ring gasket").
- "Multi Single Cell" structure
 - Coupling of the Accel. mode and HOMs among the cavities significantly suppressed by the HOM absorbers on the GBPs
 - One big mechanical structure with solid connections of the components
- Loss factor of this structure: 2.3 V/pC (bunch length: 6.0mm)
- Vacuum pumps directly attached to each cavity
- In the DR tunnel, we will assemble the cavities separating them with GBPs similar to LEGO blocks.

<u>NC</u> : <u>Normal-Conducting</u> <u>HOM</u>: <u>Higher Order Mode</u> <u>MR</u>: <u>Main Ring</u> <u>DR</u> : <u>Damping Ring</u> <u>CC</u>: <u>Coupling Cavity</u> <u>SC</u>: <u>Storage Cavity</u> <u>GBP</u>: <u>Grooved Beam Pipe</u>

Main Characteristics of the DR Cavity

1. 3 cavities (max) in a limited space (3.8 m) originally designed for one cavity

• Required Total V_c = 0.26 MV (until 2010) \rightarrow 1.4 MV (from 2011)

- Three cavities with 0.7 MV/cav (→ tot. 2.1 MV) in operation
- Up-down separation of the HOM waveguides
- The neighboring cavities share a Grooved Beam Pipe inbetween.
- The cavity is connected directly to Grooved Beam Pipes with lip welding for vacuum sealing at the outer periphery (weld ring gasket)
- Compact HOM absorbers (SiC tiles)
- 2. Complete HOM-damped structure
 - Based on the ARES cavity system
 - CBIs suppressed (Appendix D)

Components of the RF Structure except for the cavity

RF Cavity for the DR (DR Cavity)

HOM Waveguide Load with SiC Tiles Inside

Turbo-Molecular Pump

Sputter Ion Pump

Design Parameters

RF operating frequency	$508.9 \mathrm{~MHz}$
$R_{ m sh}/Q_0{}^{ m a}$	150Ω
Q_0	$\approx 30000 \ (97\% IACS^{b})$
Input coupling factor	≈ 1.3
Gradient required in operation	$E_{\rm acc} = 2.7 \ {\rm MV/m}$
	$(V_c = 0.70 \text{ MV})$
Gradient of the specification	$E_{\rm acc} = 3.1 \ {\rm MV/m}$
	$(V_c = 0.80 \text{ MV})$
Wall loss power at $V_c = 0.70$ MV	$\approx 110 \text{ kW}$
Wall loss power at $V_c = 0.80$ MV	$\approx 140 \text{ kW}$
$E_s^{(\max)_c}$ / $E_{\rm acc}$	3.7
$H_s^{(\max)\mathrm{d}}$ / E_{acc}	$9.6 \ \mathrm{kA/m/(MV/m)}$
$S_C^{(\mathrm{max})_\mathrm{e}}$ / E_acc^2	$0.66~\mathrm{kW}/\mathrm{mm}^2/(\mathrm{MV}/\mathrm{m})^2$

History of the DR Cavity Development

- 0. Cavity No.0 (prototype) developed in JFY2011
 - Surface protection of the endplates: acid cleaning followed by chromating
- 1. Cavity No.1 fabricated in JFY2012
 - Surface protection of the endplates: Electropolishing (EP)
- 2. Cavity No.2 fabricated in JFY2013
 - Surface protection of the endplates: Electropolishing (EP)

No difference between No.1 and No.2 in the: ✓ Electric design

- ✓ Mechanical structure, and
- ✓ Fabrication method

(3. Cavity No.3 to be fabricated in JFY2017?)

$V_c = 0.95$ MV/cav demonstrated at the Test Stand

(> 0.7 MV/cav required for DR operation)

Cavity No.1

During the stability test after the RF conditioning

V _c [MV/cav]	Wall-Loss Power [kW]	Total Holding Time [hours]	Number of Cavity Trips
0.80	144	30.5	1
0.85	164	18	0
0.90	186	14.5	3
0.95	210	8	1

Cavity No.2 During the RF conditioning [kW] 200 150 refl 2 100 1 P. . inp 50 V_e [MV] 0 0.8 0.6 0.4 0.2 MIN Vacuum [×10⁻⁵Pa] 10 20 30 80 90 100 110 40 50 60 70 **Conditioning Time** [hours] \checkmark P_{in} (P_{refl}) : input power to (reflected power from) the cavity

✓ Wall-loss power: P_{wall} = P_{in} − P_{refl} = ~0.99 x P_{in}
 ✓ Cavity No.2 reached 0.95MV/cav successfully.

Configuration in the DR Tunnel

At the beginning of the DR commissioning

Ultimate

What We Learnt from the R&D of the DR Cavities

(Note: No EP applied to the barrel part.)

- **1.** *Electro-polishing (EP)* for the end plates gives significant improvement in:
 - $\mathbf{P} \mathbf{Q}_0$
 - Field emission during RF conditioning

- 2. Same performance between DR Cavity No.1 and No.2 in:
 - ✓ Q₀
 - ✓ Field emission
 - ✓ RF conditioning speed
 - ✓ Vacuum performance
 - ✓ High-gradient performance: -

Breakdown Rate at $V_c=0.90$ MV/cav (after RF conditioning) Cavity No.1: 5.0^{+4.8}-2.7/24hrs Cavity No.2: 3.3^{+1.3}-1.0/24hrs

3. Significant Findings directly related to cavity breakdown

1. Improvements with the EP

3. Significant Findings directly related to cavity breakdown

by the **direct in-situ observation** of the inside of DR Cavity No.2 using 3 TV cameras for <u>Multi-directional and wide-field</u> observation during the high-gradient test

All of the cavity-breakdown events recorded in storage media <u>automatically</u> (5 seconds before, until 1 second after the moment of the breakdown)

Significant Finding (1)

60% of the cavity breakdown events are accompanied with a spot-type explosion

Intensity in the green-square region

without any other significant phenomena.

Example of the spot-type explosion \rightarrow at the moment of the breakdown (V_c = 0.56 MV/cav)

Significant Finding (2)

20% of the cavity breakdown events are accompanied with an explosion and disappearance of a stable bright spot without any other significant phenomena.

Example of the bright-spot explosion \rightarrow at the moment of the breakdown (V_c = 0.95 MV/cav)

→ This bright spot disappeared

(c) Shortly after recovering from the cavity breakdown, at $V_c = 0.95$ MV.

Intensity in the green-square region

Pyrotechnical phenomena are minority!

Flash

Lightning

A few % of the cavity breakdown events

For more details →T. Abe *et al.*, "Breakdown study based on the direct in-situ observation of inner surfaces of an RF accelerating cavity during a high-gradient test", submitted to PRAB. (Preprint: <u>KEK-Preprint_2015-25</u>)

Summary

ARES cavities for the MRs

- Successful operation except for the two serious troubles:
 - Vacuum trouble on the D8-D cavity
 - Precipitate growth of the antirust in the chillers

DR Cavities

- Good performance demonstrated
- Significant findings directly related to cavity breakdown on the NC CW UHF cavities obtained through the high-gradient test

Photo on June 10, 2016, in the DR/RF section

(Assembly testing)

Thank You!

Appendices

Longitudinal CBI driven by the accelerating $\pi/2$ mode

Figure 7.8: Coupling impedance of the $\pi/2$ mode calculated for the SuperKEKB LER where the design beam current of 3.6 A being accelerated with 22 ARES cavities, compare with that for the KEKB LER.

Figure 7.9: Growth time constants of the CBI modes of $\mu = -1, -2$, and -3 due to the $\pi/2$ mode, plotted as a function of the beam current in the SuperKEKB LER.

-To be cured by the RF feedback systems (shown in the next page)

S. Yoshimoto, et al., presented in the 14th Symposium on Accelerator Science and Technology, Tsukuba, Japan, 2003 (PaperID: 1P072)

Longitudinal CBI driven by the parasitic 0 and π modes

Figure 7.10: Coupling impedance (top) of the 0 and π modes, and the imbalance (bottom) with respect to the RF frequency.

To be cured by the longitudinal bunch-by-bunch feedback system

Longitudinal HOM Impedance (Simulation Results) and CBI Threshold at SuperKEKB/LER

Horizontal HOM Impedance (Simulation Result) and CBI Threshold at SuperKEKB/LER

Appendix B

Multipactoring suppression by fine grooving of conductor surfaces of coaxial-line input couplers

T. Abe, et al., Phys. Rev. ST Accel. Beams 13, 102001, 2010

We have replaced all the 15 chillers used at KEKB for a long time.

- First, we used the same type of chiller with the almost the same specifications (ORION RKE-1500A-VW) at the test stand (D1-A) on the ground.
 - Performance and stability demonstrated
 - No trouble so far for 8-year operation
- We purchased succession machines (ORION RKE-1500B1-V) for MR and DR operation, and replaced the old 15 chillers (ORION RKS-1500-V-C) by these (ORION RKE-1500B1-V).
 - Small amount of precipitates observed in the reservoir tanks in two of the chillers in FUJI D8 on 2015-10-07

Comparison between the Chillers

	Capacity of the reservoir tank	Top cover on the reservoir tank	Feed-water inlet	Overflow-water outlet
ORION RKS-1500-V-C (used in the KEKB tunnel)	45 L	Yes (in addition to the top cover on the chassis)	Closed in operation	Closed in operation
ORION RKE-1500A- VW (used at the test stand (D1-A) on the ground)	30 L	None (only the top cover on the chassis)	Closed in operation	Open always
ORION RKE-1500B1-V (used in the SuperKEKB tunnel)	15 L	None (only the top cover on the chassis)	Closed in operation	Open always

Appendix D

CBIs driven by the HOM Impedances

✓ From wakepotentials calculated, using GdfidL, for the whole RF section → ✓ CBI thresholds for the DR design

