Overview of Phase 1 Commissioning

Y. Funakoshi for SuperKEKB Commissioning Group Accelerator Laboratory, KEK 2016.06.13@21th KEKB Review

> Upgrade project of KEKB B-factory

Search for new physics beyond the standard model at B-meson regime

> e⁻ - e⁺ two-ring collider consisting of

- Injector (Linac): L ~600 m
- Damping ring (e⁺): C ~100 m
- □ Main ring (MR): *C* ~ 3016 m
 - HER: 7 GeV e⁻, 2.6 A
 - LER: 4 GeV e⁺, 3.6 A
- Belle-II detector

Design luminosity

80 x 10³⁴ cm⁻²s⁻¹
(~40 times of KEKB)

SuperKEKB Commissioning Phases

2016 Feb. ~ June

Phase 1 w/o QCS and Belle II

basic machine tuning vacuum scrubbing Optics tuning BKG study ~2017 Autumn (~ 5month)

Phase 2 w/QCS and Belle II w/o Vertex detector

DR commissioning BKG study Luminosity tuning Target luminosity: 1 x 10³⁴ cm⁻² s⁻¹ ~2018 Autumn

Phase 3 w/ full Belle II

Physics Run Luminosity tuning

Mission of Phase 1 operation (Feb. 2016 ~ June 2016)

- Startup of each hardware system
- Establish beam operation software tools
- Preparation for installation of Belle-II detector
 - Enough vacuum scrubbing
 - Request from Belle II group: ~1 month vacuum scrubbing with beam current of 0.5~1A (360~720Ah).
 - Beam background study with test detector (named Beast)
- High beam current operation
 - Find/solve problems associated with high beam current operation
- Optics study w/o IR (no detector solenoid)
 - Low emittance tuning
- Other machine studies

Machine parameters in Phase 1

	LER	HER	Units	
Beam energy	4.000	7.007	GeV	
Beam current	910 (~40)	830 (~40)	mA	(): optics correction
# of bunches	1576	1576		
Bunch current	0.58	0.52	mA	
Hor. emittance	1.8	4.6		Zero current
Momentum compaction	2.45 x 10 ⁻⁴	4.44 x 10 ⁻⁴		
Energy spread	7.5 x 10 ⁻⁴	6.3 x 10 ⁻⁴		
Total V _c	7.56	12.45	MV	
Bunch length	4.6	5.3	mm	Zero current
ν_{s}	-0.019	-0.025		
Tune v_x/v_y	44.59/44.63	45.57/43.61		
U ₀	1.76	2.43		Wiggler ON
$\tau_{x,y}/\tau_x$	46/23	58/29		Wiggler ON

as of June 12th

Machine parameters in Phase 3

2011/July/20	LER	HER	unit	
E	4.000	7.007	GeV	
l	3.6	2.6	А	
Number of bunches	2,5	00		
Bunch Current	1.44	1.04	mA	
Circumference	3,016.315		m	
ε _x /ε _y	3.2(1.9)/8.64(2.8)	4.6(4.4)/11.5(1.5)	nm/pm	():zero current
Coupling	0.27	0.28		includes beam-beam
β_x^*/β_y^*	32/0.27	25/0.30	mm	
Crossing angle	83		mrad	
α _p	3.25x10 ⁻⁴	4.55x10 ⁻⁴		
σδ	8.08(7.73)x10 ⁻⁴	6.37(6.31)x10 ⁻⁴		():zero current
Vc	9.4	15.0	MV	
σ _z	6.0(5.0)	5(4.9)	mm	():zero current
Vs	-0.0247	-0.0280		
v_x/v_y	44.53/44.57	45.53/43.57		
Uo	1.87	2.43	MeV	
T _{x,y} /Ts	43.1/21.6	58.0/29.0	msec	
ξx/ξy	0.0028/0.0881	0.0012/0.0807		
Luminosity	8x10 ³⁵		cm ⁻² s ⁻¹	

Guideline for vacuum scrubbing and achievement as of June 12th

LER_Guideline_20160612_1

Request from Belle II group: ~1 month vacuum scrubbing with beam current of 0.5~1A (360~720Ah).

Startup of SuperKEKB (3 months)

- Much faster startup than KEKB
 - KEKB beam currents achieved after first 3 months
 - LER: ~300mA, HER: ~200mA (540mA, 300mA: 4 months)
 - SuperKEKB beam currents achieved after first 3 months
 - LER: ~650mA, HER: ~590mA (820mA, 740mA: 4 months)
- Compared with KEKB...
 - Each hardware component has been upgraded with experiences at KEK and has worked fine (RF, Magent, Vacuum...)
 - The bunch-by-bunch feedback system has more effectively suppressed instabilities.
 - Operational tools (such as closed orbit correction system) has worked fine based on experiences at KEKB.

Beam background study using Beast detector

- Touschek background
 - Change vertical beam size by using ECK (Emittance Control Knob)
- Vacuum background
 - Vacuum bump study
- Injection background
- Collimator study

Details are given in the talk by H. Nakayama.

Various measurements (fast charged particle, high-energy photons, thermal/ MeV neutron, dosimetry, etc..) to **validate beam loss simulation**

Issues with high beam currents

- Nonlinear vacuum pressure rise as function of beam current (LER)
- Vertical beam size blowup as function of beam current (LER)
- Frequent beam aborts associated with vacuum burst (LER)
- Longitudinal coupled bunch instability (LER)
 - Instability was first observed around 660mA. The mode number is ~600. We needed the use of longitudinal feedback system to suppress it. The source of the instability is still unknown. At KEKB, we never needed the longitudinal feedback system.
- Longitudinal coupled bunch instability (HER)
 - Sometimes, detuned cavities induce the instability due to the fundamental mode. -1 mode damper was set up to suppress the instability.
- Hardware troubles due to the high beam currents
 - Vacuum leakage by the direct hit by the beam at bellows near the abort kickers (HER) (Suetsugu's talk)
 - Damage to the feedthrough of the transverse FB kicker (LER) (Tobiyama's talk)

Nonlinear pressure rise against beam current in LER

- The pressures at whole LER ring showed the nonlinear behavior against the beam current.
- The behavior is quite similar to that of electron currents measured at aluminum parts without TiN coating.
- We have aluminum bellows chambers along the ring without TiN coating. The bellows chamber has a length of 0.2 m and located every 3 m on average. Number of such bellows chamber is 810.
- Countermeasure
 - Installation of solenoid magnets at th bellows.
 - We have installed permanent solenoid magnets at all of bellows chambers during short break (June 02-05)

More details are discussed in the talk by Y. Suetsugu .

LER vertical beam size blowup

June 1st (before installation of solenoids at bellows chambers)

June 6th (after installation of solenoids at bellows chambers)

One of the motivation of installing solenoids was to check their effects to the beam size.

Blowup study

June 1st (before installation of solenoids at bellows chambers)

June 8th (after installation of solenoids at bellows chambers)

The solenoids at bellows were effective to raise the blowup threshold by a factor 1.5. The electron clouds seem to be responsible for the beam blowup. We may need more solenoids for higher beam operation.

More details will be given in the talks by Y. Suetsubu and K. Ohmi.

Vacuum burst in LER

Y. Suetsugu

Pressure bursts accompanying beam loss in LER

- One big concern is that beam aborts accompanied by localized pressure bursts have been frequently observed from the early stage of the commissioning in the LER.
- The beam loss monitors trigger the beam aborts.
- Frequent pressure bursts have occurred near or inside the aluminum beam pipes in dipole magnets.
 - Our beam pipes for dipole magnets have a groove structure as a counter measure against electron cloud effects.
- The beam current where the bursts occurred has Increased gradually.
- The reason for the pressure bursts is not well understood.
- Possible causes are the discharge at poor electrical contacts by the wall current and the collision of dusts (small particle) with circulating beams. A knocker against vacuum chamber could reproduce the vacuum burst. This result seem to support the hypothesis that the burst is induced by dust particles.

More details are discussed in the talk by Y. Suetsugu.

KEK B Factory

Locations of vacuum burst in LER

Optics corrections

- Base measurements for hardware system check
 - BPMs
 - BPM check with beams (orbit bumps) -> We found misconnection or mis-cabling of BPM cables with ~>20 BPMs.
 - Gain calibrations of BPMs have been done with beams.
 - Quad-BPM measurements (to measure difference between field center of quadrupole magnets and the center of nearby BPM) have been almost finished.
 - Steering magnet
 - Check with beams (orbit bumps) -> We found an error with the excitation curve of steering magnets.
 - Closed orbit correction system
 - Closed orbit correction is a basis of optics correction. A reliable closed orbit correction system has been established based on the above measurements and modifications.

Beam based BPM offset measurement (Quad-BPM, SextBPM)

Ring circumference

- From the orbit measurement, we can know the ring circumference.
 - LER: C_{Measurement} C_{Design} ~2.0mm (Cir: 3016m)
 - C_{LER} C_{HER} ~ 0.2mm (LER chicane can adjust +/-3mm)
 - Magnet group has done a good job in the alignment work.

Method of optics correction

- At SuperKEKB, we follow the method successfully used at KEKB.
- Optics corrections on X-Y coupling, dispersions and beta-beat are done iteratively.
- Since there are not enough single path BPMs, we rely on conventional BPMs.
- For the measurements of X-Y coupling and betabeta, orbit responses are measured with single kicks by steering magnets.
- For the measurement of dispersion, we use a usual RF phase frequency change.

Details are given in the talk by H. Sugimoto.

Highlight of low emittance tuning

- The X-Y coupling correction and dispersion correction are important to get a low vertical emittance.
- While the HER corrections went well, we encountered a difficulty in the LER corrections.
 - The obstacle of the corrections was leakage magnetic field from the Lambertson septum magnets whose main component is skew-Q.
 - We have made two countermeasures against the problem.
 - The use of skew-Q coils of the SF magnet nearby the Lambertson. (downstream of the Lambertson septum)
 - Installation of permanent skew-Q magnet in the upstream of the Lambertson septum.

Leakage Field from Lambertson Septum

- A Lambertson septum is used to deliver aborted beam to a beam dump.
- This magnet creates unexpected leakage field to stored beam line.

Add Skew Correctors

H. Sugimoto

- All focusing (SF) and defocusing (SD) sextupole magnet have skewQ coil.
- As for Phase 1, Power supplies (PS) for skewQ are prepared only for SD magnets.
- We activate skewQ coils of one SF pair near the septum by using standby PS.

Activate those two skewQ coils installed in SF magnets.

XY-Coupling Correction

- Correction with the additional skewQ coils.
- The vertical leakage orbit is effectively reduced. -

Measurement:

Vertical leakage orbit induced by independent 6 steering kicks.

Induced horizontal orbit amplitude

H. Sugimoto

LER Vertical Dispersion Before Correction

LER Vertical Dispersion After Correction

- This peak is not correctable due to hardware limit of SkewQ corrector strength.

- We have a plan to enforce SkewQ correctors.

The skew quadrupole magnets to cancel the leakage field from the Lambertson

Ferrite block

167

¢150

ICF203-FH

art

N. lida, M. Kikuchi, K. Kodama, T. Mimashi, T. Mori, T. Tawada

Present status of linear optics corrections

Items	LER	HER	KEKB typical value (LER)	Unit
X-Y coupling average of rms (Δy_{1-6})	19.8	7.7		mm
H. Dispersion rms (Δh _×)	14.8	16.1	10	mm
V. Dispersion rms (Δh _y)	4.2	4.8	8	mm
Beta-x rms (Δb _x /b _x)	4.9	4.3	6	%
Beta-y rms (Δb _y /b _y)	5.3	3.7	6	%

More details will be discussed in the talk by H.Sugimoto.

Beam size measurement by using X-ray monitor

March 23rd, 2016 $\varepsilon_{y} = 96 \text{pm} (\text{by} = 67 \text{ m} @ \text{source})$ $\varepsilon_{y} / \varepsilon_{y} = 5.3\% (\text{ex} = 1.8 \text{nm})$

 ε_{y} =356pm (by = 7.7 m @source) $\varepsilon_{y}/\varepsilon_{y}$ =7.7 % (ε_{y} = 4.6nm)

April 5th, 2016 $\epsilon_{y} = 20pm$ (by = 67 m @source) $\epsilon_{y}/\epsilon_{y} = 1.1\%$ (ex = 1.8nm)

Target vertical emittance (LER) in Phase 1 is ~5pm.

HER Beam size measurement by using X-ray monitor June 1st

ant-Ant-**WHXRM: BEAM: SIGMAY** 20 10 Astyradion and n Ο BMHDCCT: CURRENT

HER σy@source point = 40μm? -> εy=210pm

This vertical emittance is inconsistent with optics correction results.

HER X-ray monitor study (June 9th)

The current dependence of HER vertical beam size seems to be fake.

HER X-ray monitor study (June 9th)

The measured beam size does not scale the beta function. Is there any offset in the measurement such as coupling from horizontal size?

More details are given in the talk by J. Flanagan.

Summary

- After 5 year's upgrade work from KEKB, Phase 1 operation of SuperKEKB (w/o Belle-II detector and IR) started in Feb. 2016 and on the way.
- The startup of SuperKEKB operation is relatively smooth thanks to experiences at KEKB.
- In preparation for installation of Belle II detector in Phase 2, vacuum scrubbing is being done and beam background study has been done with Beast detector.
- The optics correction study is going on energetically.
- The LER low emittance has been much improved by the correction of leakage field of Lambertson septum.
- The calibration of X-ray monitor is an important tuning item.
- We observed the vertical beam size blowup in LER. The source of the blowup seems to be the electron clouds.
- Injector has worked stably. For Phase 2 and 3 operation, we will need more improvements.

SPARE SLIDES

Injection phase vs efficiency

LER: $\Delta \phi_{\text{full}} = 80 \text{ deg.} \rightarrow 28 \sigma_{\delta} \leftrightarrow 32 \sigma_{\delta} \pmod{10}$

see next page

Comments

HERのε_vは、本当に巨大なのか? (really big ?)

DA(sigmas)	50	DA	Start	
NZ	26	PBUNCH	3.14e+	10
ΔNZ	2	MINCOUP	.00	04

Touschek lifetime ~530 min when ε_y =180 pm (ε_y / ε_x = 3.9 %)

σ_v = 37 μm @ X-ray

HERのoptics測定からは推測できない(see next)

abort sextをOFFすればoff-momentumの 横方向の口径はかなり大きくなる。

Injector Status

- Requirements to Linac
 - Higher charge for electron and positron
 - Lower emittance for electron and positron
- Linac challenges
 - Low emittance and high intensity e-
 - high-charge RF-gun
 - Low emittance e+
 - damping ring
 - Higher e+ beam current
 - new capture section with flux concentrator
 - Emittance preservation
 - precise beam control
- Status in Phase 1
 - RF gun: still under development
 - Damping ring: under construction
 - Flux concentrator: in practical use 4 GeV/
 - Charge at end of BT
 - e-: ~0.6nC, e+:~0.6nC (2bunches)
 - $\overline{41}$ Dedicated machine study for injector: 1 day / week

SuperKEKB requirements (Phase 3)

	KEKB (e+/e-)	SuperKEKB (e+/e-)
Charge [nC]	1/1	4/5
Normalized	2100/300	100/50 (H)
emittance[µm]		20/20 (V)

Layout of electron gun (Thermionic DC gun and photo-cathode RF gun)

予備実験(4/25)

 南トンネルの3個のベローズに「永久磁石」を 取り付けて、圧力の振る舞いを調べた。

ベローズ内部表面で 中央付近Bz = 60~120 G 磁石の真下で極性反転

Vertical Emittance and Dispersion

Beam lifetime from vacuum and Touschek effect

- Change vertical beam size -> Lifetime measurement
- Lifetime from vacuum: 129.7 min. @(350 mA, 1576 bunches)
- Actual lifetime: 75min. -> Touschek Lifetime:177

Touschek lifetime from simulation

- $\epsilon_{y}/\epsilon_{x} = 15\%$, $I_{b} = 0.25$ mA
- Lifetime from simulation: 113 min.

History of Phase 1 operation

History of vacuum scrubbing Y. Suetsugu

> The beam currents and average pressures (2016/4/30)

Request from Belle-II group: ~1 month vacuum scrubbing with beam current of 05~1A.48

Blowup study

Iteration

2008_06_19_19_06_29fop Fill-Length Optimization 2008_06_19_19_06_32luh Beam Collision Panel 2008_06_19_19_09_12XY_Coupling MeasOptHER 2008_06_19_19_12_59Dispersion MeasOptHER 2008_06_19_19_18_27XY_Coupling MeasOptHER 2008_06_19_19_21_34Dispersion MeasOptHER 2008_06_19_19_22_29Dispersion MeasOptHER 2008_06_19_19_23_29Dispersion MeasOptHER 2008_06_19_19_31_36Global_Beta MeasOptHER 2008_06_19_19_38_29Global_Beta MeasOptHER 2008_06_19_20_16_46_amsad8 amsad8 screen capture 2008_06_19_20_34_16_amsad8 amsad8 screen capture

*A loop of coupling, dispersion, β corrections takes **30-60 minutes** per ring to converge. (1 correction takes 3.5 to 7 minutes)

coupling \rightarrow dispersion β

* We do not have to solve the entire problem at once by a single big matrix.

* Although these corrections are not independent, their cross-talks are smaller than the diagonal parts, so the iteration converges quickly.

Machine study to be done in May and June (>30 shifts)

- More optics study
- X-ray monitor calibration
- LER beam size blowup
- Longitudinal/transverse bunch-by-bunch feedback system
- Beast background study
- Impedance measurement
- Rotational sextupole magnet
- Dithering coils
- Beam transport line study
- Linac study (RF gun etc.)