

Injector Linac upgrade status towards SuperKEKB

Kazuro Furukawa Injector Linac, KEK

Linac Upgrade Overview

Mission of electron/positron Injector in SuperKEKB

40-times higher Luminosity

20-times higher collision rate with nano-beam scheme

- $rac{rac}{
 ightarrow}$ ightarrow Low-emittance even at first turn
- $\varkappa \rightarrow$ Shorter storage lifetime

Twice larger storage beam

Linac challenges

- Low emittance e-
 - ≍ with high-charge RF-gun
- Low emittance e+
 - **¤** with damping ring
- Higher e+ beam current
 - \varkappa with new capture section
- Emittance preservation
 - with precise alignment & beam control

+4+1 ring simultaneous injection

→ Low-emittance beam from Linac

Required injector beam parameters

Stage	KEKB (final)		Present Phase-I		SuperKEKB (final)	
Beam	e+	e–	e+	e–	e+	e–
Energy	3.5 GeV	8.0 GeV	4.0 GeV	7.0 GeV	4.0 GeV	7.0 GeV
Stored current	1.6 A	1.1 A	1 A	1 A	3.6 A	2.6 A
Life time	150 min.	200 min.	100 min.	100 min.	6 min.	6 min.
Bunch charge	Primary e-10nC $\rightarrow 1 \text{ nC}$	1 nC	Primary e- 8nC $\rightarrow 0.4 \ nC$	1 nC	Primary e-10nC $\rightarrow 4 \text{ nC}$	<u>5 nC</u>
Norm. Emittance (γβε) (μrad)	2100	200	2400	150	<u>100/20</u> (Hor./Ver.)	<u>50/20</u> (Hor./Ver.)
Energy spread	0.125%	0.125%	0.5%	0.5%	<u>0.1%</u>	<u>0.1%</u>
No. of Bunch / Pulse	2	2	2	2	2	2
Repetition rate	50 Hz		25 / 50 Hz		50 Hz	
Simultaneous top-up injection (PPM)	3 rings (KEKB e–/e+, PF)		No top-up		<u>4+1 rings</u> (SuperKEKB e–/e+, DR, PF, PF-AR)	

Progress

2010: Beam design and hardware developments
2011-2014: Recovery from earthquake, mainly because of soft-structure girder design
2012-: Construction and commissioning
2012-: Step-by-step acquirement of beam licenses
2016: Phase-1

Continuous: Light source injections

Linac Upgrade Overview

Linac Upgrade Progress towards SuperKEKB (1)

High-charge low-emittance RF gun development

- QTWSC cavity and Ir5Ce photo cathode developments
- Laser development is underway

Positron generator commissioning

- Good agreement with the simulation results
- Will solve discharge issues

Precise alignment for emittance preservation

- Recovering after large earthquake in 2011
- Reaching specification of 0.1~0.3mm
- Longer term stability should be solved

Utility upgrade during FY2014

for electricity (+1.5MW) and cooling water (+1400L/min)

Linac Upgrade Progress towards SuperKEKB (2)

- High-power microwave modulator upgrades
- Low-level RF controls/monitor upgrades
 - Pulse-to-pulse modulation (PPM) between 4+1 rings
 - More spaces for increased number of devices

Beam instrumentation

- Large/small aperture beam position monitors (BPM)
- Precise/fast and synchronized BPM readout system
- Wire scanners and beam loss monitors
- Streak cameras
- (Deflectors, etc.)
- Pulsed magnet developments
 - * ~3 bends, ~30 quads, ~40 steerings
 - Even with energy recovery

Event-based control and timing system up

- Combination of MRF & SINAP modules
- Essential for PPM operation
- Precise timing & synchronized controls
- Bucket selection at DR and MR

Beam wire scanner

ulse magnet tests

SINAP event modules

Bucket selection in Phase-2 with DR

• Without DR, simply wait up to 5120 x 96 ns ~ 490 μ s

96 ns : highest common frequency between linac – ring

With DR, in order to select arbitrary bucket in MR, have to wait up to ~4.5 ms, even if a bucket in DR was carefully selected

Power supply can wait only 2 ms, one of only 2798 buckets in 5120 buckets can be selected, may have to change LLRF condition at latter half of linac every pulse

Beam Upgrade and Radiation Controls

- Step-by-step upgrade of beam limits Towards 5 nC per bunch in Phase-3
- **Beam license applications**

- Fall 2013, 10 nA at #28 dump, 1250 nA at #A2 dump
- Spring 2014, New utility rooms, 50 nA at #61 linac-end dump
- Summer 2015, 200 nA at #15 positron target
- **Spring 2016, 800 nA at #15 target**
- Before Phase-3, 1250 nA at #15 target, 625 nA at #61 dump
- Radiation shield additions …
 - For Gun, 180deg-arc, Target, Electron stopper, Collimator, Dampingring dump, Linac-end dump, 5 utility rooms, etc
- Even balancing with PF and PF-AR beam operations

Injector Linac Upgrade towards SuperKEKB

K.Furukawa, KEK, Jun.2016. 10

Subjects to Consider

K.Furukawa, KEK, Jun.2016. 11

Emittance Preservation

- Offset injection may solve the issue
- Orbit have to be maintained precisely
- Mis-alignment should be <0.1mm locally, <0.3mm globally</p>

Injector Linac Energy Management

Super KEKB

K.Furukawa, KEK, Jun.2016. 14

3

Injector Beam Commissioning for Phase-1

Electron beam

- Thermionic gun at the beginning
- * 1 nC per bunch
- 2 bunches per pulse
- 50 pulse per second

Positron beam

Primary electron with 7-8 nC per bunch

Positron of 0.7 nC at linac end without damping ring

кекв

Progress: RF gun

- MR injection from RF gun during Phase-1 was recommended in the last gun review, and was planned for May 2016 since the last year
- On May 31, even an unusual centipede (~15cm!!) managed to visit the operation room to celebrate the first injection into HER

Successful Injection into MR for the first time, on May.31 And continuing the RF gun operation since Jun.8

5

10

15

-10

-5

0

Wire Scanner Measurement

- Present beam: 1nC/bunch, 25Hz, 20mm.mrad at the gun, 30~200 mm.mrad at the linac end, ? Energy spread
- Phase-2: 2nC/bunch, 50Hz, 20 mm.mrad at the linac end, 0.1% energy spread
- Phase-3: 4-5nC/bunch
- Much room to enjoy the improvements

Injector Talks

- **RFgun Report, Y. Honda**
- RFgun and Electron Beam, M. Yoshida
- Laser and RFgun, X. Zhou
- Positron Generation and Beam, T. Kamitani
- Injector Alignment, T. Higo
- Injector Commissioning, M. Satoh

(Positron damping ring, M. Kikuchi)

Summary

- We learned a lot during KEKB operation
- Injection into SuperKEKB is another challenge with higher beam charge and lower transverse and longitudinal emittance
- Steady progress towards designed injection beam in steps
 - Alignment: almost confident on the required precision (0.1-mm local, 0.3-mm global), need to maintain for longer term
 - Positron generator: another license test, need discharge analysis
 - Thermionic gun: re-commissioned for primary electron for positron generation
 - RF gun: following recommendations at review meetings
 - Need much more radiation shield
- Will balance between final beam quality and progressive operation
- Will select optimized route depending on available resources
 - Negotiation with light sources
 - Commissions and development in parallel (no other choices)

