Injector alignment

KEKB Accelerator Review Committee 14 June, 2016 Toshi Higo (Injector linac group)

Contents

- 1. Alignment scheme
 - -Laser PD and tracker
- 2. Initial alignment
 - -Accelerator girders and magnets
- 3. Floor movement
 - -Refinement of PD measurement
- 4. Effort against emittance growth
 - -Present development
 - -Near future perspective
- 5. Conclusion

Who are contributing

Accelerator group

– Enomoto, Higo, Kakihara, Tanaka,

Control group

- Mikawa, Satoh, Seimiya, Suwada,

Injector group

– Yoshida,

Mitsubishi Electric.

– Mizukawa, Kimura, Kudo, Kusano, Suzuki, Toyotomi, Ushimoto,

Outside company

– Nishitani, Chiyokura, ...

Magnet group of KEKB ring

- Masuzawa, Sugawara, but still loose coupling

Requirement and strategy

- Requirement
- Strategy
- Laser PD measurement
- Initial alignment of girder
- Hard ware alignment on girder

Alignment scheme

500m straight reference line by laser

FIG. 5. Intensity profiles of the laser beam at (a) z = 0 m and (b) z = 500 m. Scale bars are 5 mm.

- 500m laser line stabilized by laser passage tilt.
- Improved data reliability with robust measurement.
- Sensitivity calibration done with laser tilting
- Some sensors automatically and continuously measuring now
- Started PD radiation damage evaluation

Initial alignment of girders

- Girders in sectors 3—5 were quickly aligned in 2011 after the earthquake.
- 2. Positron generation section was installed by summer 2014.
- 3. By late Jan. 2015, all units in 3—5 sectors were aligned straight.
- 4. These alignment reading is better than 0.1mm at the timing of installation.
- 5. Alignment has been measured from time to time without further re-alignment.

Measurement 141128 -- 160330

KEKB Accelerator Review (Higo)

Mounting tracker reflector on each hard ware

Hard ware alignment on each girder measured in Jan. 2016

-0.15

-0.1

-0.05

0.05

0.1

0

0

0.15

0

-0.15

-0.1 -0.05

0

0.05

0.1

0.15

0.2

Accelerator position on girder unit 54 from August 2014 to May 2016

Movement in 1.5 year between July 2014 and January 2016

ACC's can be aligned on each girder within below +/-0.1mm.

It is speculated to be stable within +/-0.05mm. This should be confirmed or realized.

Floor movement

- Laser PD measurement showed movement of larger than a millimeter
- Severe at expansion joints
- Started continuous measurement over 500m
- Will start detailed 40m evaluation across a joint

Floor moves by fraction of 1 mm example in more than a year (2015/4/3~2016/6/2)

Floor movement close-up w.r.t. 2016/3/30

~20m from expansion joint is mostly moved.

Expansion joint and evaluation

Expansion joint

Relative movement across expansion joint at 28 unit

- Daily regular motion exists
- Gradual drift over a month after operation starts
- Sensitive on tunnel temperature
- Big perturbation due to typhoon
- Show a year cycling.

PD measurement automatic and continuous

Measurement in every 4 hours

Automatic measurement in every 4 hours at 10 locations for half a year

from January to June in 2016

Daily motion Movement in 4 hours or those in a week

Red arrow = +/- 0.1mm band

A concern PD deterioration due to radiation

Deterioration observed during phase-1 operation for those at collimator. How to use the PD information needs to be studied.

Simulation and cures

- SAD simulation started
- Possible cure methods are under consideration.
- How to stabilize position to keep alignment?
 - Studies should be made how to compensate the floor movement
 - Do we need other tool to evaluate the floor motion? i.e. HLS or WPS
 - How to implement beam information into feedback

Compensation algorithm

- One-to-one steering \rightarrow Minimize residual error^2
- DF or WF steering
- How fast can we and how frequent should we apply offset injection?

SAD simulation on emittance growth along 500m straight section

Assumption

- Sector C~5 over 500m
- ε_{inj} = 10 μm
- $\sigma_z = 10 \text{ ps} / 2.35$
- δ_e = 0.4%
- σ_Q = 0.2mm (3σ cut)
- X_{ACC}, Y_{ACC} = Girder(measured)
- 2a_{ACC} = 20mm (diam.) for wake calc.
- $W_t = Yokoya$ formula

Procedure

- 1. Orbit correction at BPM without wake field
- Offset injection (x, x', y, y') at the front of sector C with wake field ON
- 3. Add variation in misalignment of ACC and Q
- 4. Add jitter in ST and Q
- 5. Check response to beam injection jitter

60 seeds of misalignments

60 seeds of misalignments + perturbation unable to be compensated

K-value jitter

ST: K jitter = Peak K value X 0.08% (P-P) Q: K jitter = Peak K value X 0.32% (P-P) Injected beam: No jitter

Mainly due to ST-K jitter

Injection jitter

ST, Q: K jitter = Operation K value X 0.2% (P-P) Injected beam position jitter ~ beam size: Sigma 0.1mm Gaussian in 100 seeds

Mainly due to injection jitter Jitter should be less than beam size

Emittance growth under measured misalignment + random movement not to be compensated

Uncompensated random movement of 0.4mm in sigma is marginal?

2016/6/14

KEKB Accelerator Review (Higo)

Floor movement to be compensated

Unit mm

	Horizontal	Vertical
Daily	0.1	0.1
Week	0.1	0.1
Year	0.5	1
Speed	0.01mm/hr	0.01mm/hr

Movers under study

Mover tests for accelerator girder

Support structure being developed for pulse magnets

Requirements and strategy against floor movement

In phase-2 timeframe

- Alignment as is with trial cures at some points
- Confirm overall and year-scale floor movement
- Evaluate distance scale from joint
- Try to detect movement with beam
- Investigate the cure algorithm with simulation
- Study feasibility of mover or passive bridge

• Development for phase-3

- Alignment corrected once more and stabilized with movers or suppression mechanism near relevant expansion joints
- Beam manipulation to keep golden orbit
- Compensation such as offset injection is developed

Concluding remarks

Development toward Phase-3

Perspectiv	e o	n c	lev	elo	pn 2014	en	t a	and	op	era	atic	m	as	of	160)61	4										20	18								
	4	5	6	7	2010	0	10	11	12	1	2	2	4	5	6	7	Q	٥	10	11	12	1	2	2	Λ	5	6	7	Q	0	10	11	17	1	2	2
	-4 Dha	5	1 10	<u>,</u>	0	9	10	- 11	12	-	2		4	3	0	1	0	7	10	11		Dha	Z - 7	3)	~		0	1	0	9	Dha	TT	2 /1	- -	2	3
	21	se-	T TI)	Ļ.			ЭТ											DR Plidse						- 4							FIId	ise	5 4	N		
	51						51												AT																	
Electron			RFG	ì			•••	• • •		• • •			•					_	RFG	a																
Positron	AT(The	rmio	nic	gun	at /	\1)		FC	ref	urbis	sh • •	•••	·AT	end				RFG	ì																
Magnets																Puls	se m	agn	et ir	istal	I															
seam study							be	am s	stuch	y on	emi	ittar	ce						bea	m st	udv		•••	•••	••••	•••	•••	• • • •		•••		•••	•••	••••	•••	
Simulation	Sim	ulat	ion s	stuc	ty by	y ref	flec	ting	pra	ctica	al pa	tter	n, ai	moui	nt ai	nd s	peed	lof	floo	r m	wer	nent														
loor meas.	PD	mea	sure	eme	nt o	ver	sho	le li	nac	as f	requ	ent	as p	ossi	ble																					
		10	пог	e P	DS	EV	aiu			100		ven	ent	near	exp		ion j cor E	יחט החכ	or of	bor	too	l for	ED	if n	ood	od.									_	
			_					-		-	-	-	Mai	ua	Lui	e ia:	Junct /	-D(ho r	boy			r D mod		eeu	-0						_	_		-	
			_					-		-	-	-			_	_	1 BL	all (nea	1000	ēР			-											-	
1over study		Mo	/er t	est	(AC	C g	irde	er, p	ulse	mə	g su	ppor	†)																					_	_	
arge-scale brid	lg e		Des	ign	stuc	ty of	f pa	ssiv	e st	ruct	ure	feas	sibilit	y																					_	
								S	trat	eav	deci	sion					-						-												_	
									1	3,			Pro	duce	a f	ew	sets	of	final	aird	lers															
																	Insta	all t	he a	abov	e ai	rder	5													
																			Eva	luat	e wi	th b	eam													
																									Mas	s d	rodu	ictio	n as	s nee	eded					
																												Inst	tall 1	final	ver	sion				

Concluding remark

1. Initial girder alignment in 2014

Done with residual ~0.3mm in sigma over 500m line.

2. Hard wares alignment on girder improved

Done with errors 0.05mm in sigma Kept for in a year scale

3. Floor continuous measurement

Movement mostly near expansion joints Daily motion ~0.1mm to yearly ~1mm

4. Floor sophisticated evaluation

Will explore near expansion joint Will design compensation mechanism

5. Compensation mechanism

Basic study of movers is under way Passive structure design study to be made

Concluding remark (cont.)

6. Tools to identify the movement

Radiation resistive PD is being searched Pending now to develop other evaluation tools Should study how to use which beam information

7. Beam study

Should study beam emittance on floor movement Study offset injection

9. Test girder

Installation in mid 2017 Should study effectiveness during phase-2

10. Full scale cures

Installation by Phase-3

Sophistication in parallel to phase-3 operation