DR Status

Kikuchi, M., for the 21st KEKB Accelerator Review Committee, 14 June, 2016.

I. System layout

2. Brief summary of the lattice design

- •Coherent oscillation amplitude(2Jx) is dominated by the septum width.
- •Maximum coherent oscillation must be less than the dynamic aperture of the LER: 700 nm
- •Emittance of injected beam should be less than 14.5 nm.
- Taking into account of acceleration to 4 GeV, the emittance of the DR should be
 53 nm.

- Emittance of ~50 nm is easy to achieve in ordinary rings.
 Relatively high emittance is a unique feature of the DR for a circular collider.
- •Damping time is a big issue.

Damping time and the lattice

$$\varepsilon_{ext} = \varepsilon_0 + (\varepsilon_i - \varepsilon_0)e^{-2T/\tau}$$

- ε_{ext} : emittance at extraction
 - ε_i : emittance at injection
 - ε_0 : emittance of DR
 - T: store time

To satisfy $\varepsilon_{ext}/\varepsilon_0 < 1.05$ $\tau < 12.8 \ {\rm ms}$ ($\varepsilon_i = 1400 \ {\rm nm}$ $T = 40 \ {\rm ms}$)

$$\tau^{-1} = \frac{r_e}{3T_0} \gamma^3 I_2$$

$$I_2 = \oint \frac{1}{\rho^2} ds = \oint \frac{d|\theta|}{|\rho|} = \frac{\Theta}{|\rho|}$$

 Θ : total bend angle T_0 : revolution time

For fixed T₀,
$$au^{-1} \propto \frac{\Theta}{|\rho|}$$

Damping time and the lattice (2)

• T_0 > kicker rise/fall time + 2(bunch-separation) = 400 ns

•We have chosen as $T_0 = 450$ ns.

• For ordinary FODO lattice, $\Theta = 2\pi$ $I_2 = 2\pi/
ho$

$$\tau = 12.8 \text{ ms} \longrightarrow \rho = 1.67 \text{ m}$$
 $B = 2.2 \text{ T}$

- We need a large-aperture bend to accommodate a large emittance of the injected beam. Bend field is desirable to be less than, say, 1.5 T.
- A novel 'Reverse-bend FODO' lattice was adopted.
 - $B_1: \theta > 0$ $B_2: -r\theta < 0$ $\Theta = \frac{1+|r|}{1-r}2\pi$

• Total bend angle can be increased by a factor of (1+|r|)/(1-r) .

$$r = 0.35 \longrightarrow B = 1.06 \text{ T}$$

$$\frac{N(\text{RFODO})}{N(\text{FODO})} = \frac{1+|r|}{1-r}$$

Cost: Number of cells

Optical functions of a single cell

•High dispersion at B2 generates the emittance, but it is still less than 50 nm.

Optical functions of the entire ring

Parameters of the DR

Table 3: Parameters of the Damping Ring						
Energy		1.1		GeV		
Number of bunch trains		2				
Number of bunches / train		2				
Circumference		135.49829	95	m		
Maximum stored current		70.8		mA		
Energy loss per turn		0.0847		MV		
Horizontal damping time	_	11.57		ms		
Injected-beam emittance		1400		nm		
Equilibrium emittance (h/v)	41.5 / 2.08			nm		
Coupling		5		%		
Emittance at extraction (h/v)	_	42.9 / 3.6	1	nm		
Cavity voltage	0.5	1.0	1.4	MV		
Bucket height	0.81	1.24	1.5	%		
Energy spread		5.5×10^{-1}	4			
Synchrotron tune	0.0152	0.0217	0.0257			
Equilibrium bunch-length	11.07	7.79	6.58	mm		
Phase advance/cell (h/v)	64.39 / 64.64			deg		
Momentum compaction factor		0.0142				
Bend-angle ratio		0.35				
Bend radius		2.7		m		
Number of normal-cells		40				
RF frequency		509		MHz		
Chamber size(normal cell)	$34^H \times 2$	24^V w/ ant	echamber	mm		

Dynamic Aperture

H.Sugimoto

• Dynamic aperture is large enough to accept the Linac beam.

(with new model for Bend)

- Slice model
- 3D field is multipole-expanded to fulfill the Maxwell eq.
- Fringe field is correctly taken into account.

(with old, WRONG model for Bend)

- · Slice model
- Integrated field in each slice is Taylor-expanded to yield multipoles

Microwave Instability due to CSR

Figure 5: Energy spread and the bunch length as a function of the bunch intensity by tracking simulation with linac beam for different number of kick per turn. (a) single kick, (b) 5 kicks and (c) 30 kicks/turn. The red (blue) line shows the energy spread (bunch length).

Nth ~ 2e10

Vlasov-Fokker-Planck solver

Figure 3: Bunch length and energy spread at different bunch intensity with various types of wake, The numerical parameters used are: **qmax=8**, **nn=300**, **ndt=1024**.

Nth ~ 5e10

 Threshold depends on the model, but the blow-up stays within 10%

3. Hardware status

- •LTR / RTL beam line magnets: Installation completed
 - vac. chamber installation, beam instrumentation scheduled in 2016, 2017
- •Ring Magnets
 - Installation completed
 - •except for 6 steerings ,which is to be fabricated in FY2016
- •Power supplies for the magnets
 - •All installed, cabling completed. (except for steerings, to be delivered in 2017))
- •Vacuum chamber
 - •Chambers for the arc : installation underway.
 - •Chambers for straights: ready to be installed

- •Extruded aluminum
- •w/ Antechamber
- •w/ Grooved structure on top/ bottom surface to suppress the electron cloud
- •w/ BPM chamber welded
- •w/ Shielded bellows
- •Water cooled

Hardware status (2)

•RF cavity development (reported in ARCI5 and Abe's talk in this ARC)

- •Single cell cavity based on ARES
- •HOM absorber, newly designed
- •Operation of 0.8 MV/cavity was confirmed.
- •0.95 MV/cavity recorded, limited by radiation
- Two cavities have been fabricated
- Transported into the DR tunnel (June, 2016)
 - RF structure assembled in the tunnel for checks:

Space for waveguides, cable racks, cooling pipes, supports, etc.,
Cavity alignment method,
What's missing, and
Others.

Hardware status (3)

· Beam instrumentation

Completed:

- Fabrication of most of sensors, electronics and cables for BPM,FB,SRM,LM and DCCT
- Setting of racks for the monitors
- Cabling for BPMs between ground levels and the tunnel
 Underway:
- Installation of BPM-support structure and vac. chambers
- Preparation of FB and DCCT support, SRM chamber

Hardware status (4) Pulsed magnets

Injection septum (In-vacuum)

Injection/extraction kicker

Extraction septum (Out-vacuum)

Lumped type magnet with a

saturable inductance switch

Double half-sine pulse shape

Mile stones

- **11** 2012.12 Tunnel construction finished
- 2013.11 PS Building construction completed
- 2014.3 Conventional Facility (LCW and the electricity) constructed
- 2014.5~12 DR Construction phase-1 (Installation of power cables, etc)
- 2015.5~12 DR Construction phase-2 (Installation of magnets and BPM cables, etc)
- D 2016.4~ DR Construction phase-3
 - Vac. chamber install
 - LCW piping to magnets
 - Magnet alignment first and second round
- RF cavity install
- etc.,

Field measurement of quads
 By selection, rms=0.07% and 0.05% for the arc-QD and QF (Spec. rms < 0.1 %)</p>

• Field measurement of sexts By selection, rms=0.13% for the arc-SX and SF (Spec. rms < 0.2 %)

Multipole component of quads and sexts

6-pole 8-pole [**1/m**] 1.5 strength 設定言流(A) Field 10-pole 12-pole 140000 [1/m4] 8000 設定電流[4 設定電流IA Current (A)

Quadrupoles

- determined from dynamic aperture
- $\cdot\,$ the number in () is based on the old model of bends.
- should be examined using new optical model for bends.

Quadrupoles

Multipole n	Bn/B2 @ r= 12 mm	Spec	unit
3	3.0		10-4
4	7.0		10-4
5	1.6		10-4
6	1.2	(3.7)	10-4

Sextuples

Multipole n	Bn/B3 @ r= 12 mm	Spec	unit
2	395 *)		10-4
3	1		10-4
4	10		10-4
5	5.6		10-4
6	7.1		10-4
7	5.2		10-4
8	4.9		10-4
9	9.8	(8.7)	10-4
10	5.0		10-4

*) equals to 0.1 % of the arc quad

4. Current status of the Damping Ring

DR and the extraction line

Installation of vac. chambers

Power supplies in the PS building

5. Construction plan

