Beam Abort System

2016.6.13 21th SuperKEKB Review Toshihiro Mimashi

Contents

- HER Beam Abort System
 - Requirements
 - Design
- Components
 - Beam Abort Kicker Magnets
 - Extraction Window
 - Lambertson Magnet and Abort BPM
 - Ceramic Chamber
 - Spattering
 - Kicker Power Supplies
- Issues
 - What's going on in the case of failure of kicker magnets

Requirements for The Beam Abort System

- Beam Abort Gap < 200nsec (KEKB abort gap 500nsec)
 - (For Stable operation of RF cavities)
- Enlarge Horizontal Beam size at the extraction window
 - (To protect extraction window)
- Perfect Beam extraction
 - All or Nothing

HER Bunch Current Monitors

Beam Abort System

Hardware Components

Abort Kicker Magnets(@7 GeV HER)

Paramet ers	Horizontal Kicker	Vertical Kicker
Θ(mrad)	2.72(Total)	1.38
B(T)	0.02	0.092
I (kA)	1.2	2.1 (3 Turn)
Length of Ferrite	385 x 8	350 x 1
# of coils	4	1
Ceramic Length (mm)	500 x 8	500 x 1

	KEKB (LER)	SKEKB (HER)
E (GeV)	3.5	7
εx (nm)	24	4.6
$\sigma x(mm)$ @window	0.68	1.1
Vertical Sweep (mm)	10	12-15
I (A)	2	2.6
$I / \sigma x / \delta Y (A / mm^2)$	0.3	0.15-0.2
Extraction window Dam I/ $\sigma x / \delta Y (A/mm^2)$: 0.53	.0	

Monitors for the HER extracted beam

- BPM
 - 1. In front of the dump
- Alumina fluorescent screen
 - In front of the Lambertson
 In front of the dump

N.lida

Beam profile measurements N. lida, Y. Enomoto. at the "extraction window" Y. Suetsugu

An alumina fluorescent screen ($\Delta t=0.2$ mm), is installed behind the extraction window. (The extracted beam profile)

2. The horizontal beam size of single bunch is measured. $\sigma x = 1.18 \pm 0.16$ (mm) Design: 1.1(mm) $\sigma y = 0.46 \pm 0.13 (mm)$ These are included the multiple scattering at the window and the thickness of the fluorescent screen.

Horizontal beam size

Vertical beam size

.45437

Power Supply (HER)

- Common Thyratron switch
- Each Horizontal kicker has main capacitor, saturable inductance and power crowbar diodes.

Ceramic chamber (Water-cool)

Requirements of Ti-coated ceramic chamber :

- Penetrate fast kicker magnetic field
- Beam image current passes surface of Ti coating
- Heating on Kovar Sleeve must be small

100 μ m $\,$ Cu Conducting layer coated inner wall of Kovar (Δ T $\,$ < $\,$ 20°C@ 2.6A)

Ti Coating Ceramic Chamber with Sputtering

The 500mm long hollow type ceramic which include cooling water path inside

Why do we use **sputtering** for Ti-coating?

- Structural change of chamber decreases acceptable temperature difference between inside and outside.
- Vapor deposition with Ti wire heating(KEKB) \rightarrow Sputtering(SKEKB) $\Delta T < 300-400^{\circ}C \rightarrow \Delta T < 100^{\circ}C$

Magnetic Field Response and Chamber Temperature

Magnetic field response with Ti-coating ceramic chamber

- : CT

- : Magnetic field with chamber
- : Magnetic field w/o chamber

- **—** : CT
- : Magnetic field w/o chamber
- : Magnetic field with chamber

Temperature Rise(Cooling Water)

		LER KEKB	HER KEKB	LER SKEKB	HER SKEKB
	l max	1.6A	1A	3.6A	2.6A
	# Bunch	1584	1584	2500	2500
	ΔΤ	2.7	1.4	8.6	2.9 (8.6)
	Power	0.56kW	0.29kW	1.8kW	0.6kW (1.8kW)

Abort Kicker: New Ceramic Chamber (Spattering) Injection Kicker: used Ceramic Camber (KEKB)

ΔT (New Chamber) = 3 x ΔT (Used Chamber)

Issues

Abort System Failure possibility

Failure Events	What happen in the system	Damage
Thyratron Break Down	2% of Total Beam loss	No Damage
Gate circuit mulfunction	2% of Total Beam loss	No Damage
Thyratron misfire	Turn weak Bend magnets	No Damage
Gate circuit misfire	Turn weak Bend magnets	No Damage
H cap break down (charging)	Turn weak Bend magnets	No Damage
V cap break down (charging)	Turn weak Bend magnets	No Damage
Charger fault	Turn weak Bend magnets	No Damage
H cap break down (discharge)	Peak current will be low	Damage ?
H kicker Bias circuit fault	Turn weak Bend magnets	No Damage
H kicker Power Crober fault	Turn weak Bend magnets	No Damage
V kicker Cap Break Down (discharge)	No Vertical Sweep	Serious Damage
V kicker Bias circuit fault	No Vertical Sweep	Serious Damage

Vertical Kicker (Pulsed Transformer circuit)

Beam Loss at the end of train

Radiation Damage of diode of crowbar circuit

7mm Pb +200mm Polyechiren +1mm Pb Reduce 1/10 radiation damage

End

Layout around the Lambertson

N. lida, M. Kikuchi, K. Kodama, T. Mimashi, T. Mori, T. Tawada The skew quadrupole parmanent magnets to cancel the leakage field from the Lambertson

Vertical beam size measurement Y. Ohnishi

