Optics Correction and Low Emittance Tuning

Hiroshi Sugimoto

for SuperKEKB Optics&Commissioning Group

2016/06/13

The 21th KEKB Accelerator Review Committee

This Talk

History of residual vertical dispersion (LER)

- Optics correction and hardware calibration are iteratively repeated.
- Some details of optics correction are reported in this talk.

Mission

Establish optics measurement and correction tools

- Optics and orbit servers to control the magnet system.
- Continuous Closed orbit correction
- Tune Changer
- Optics measurement and correction
- Local-bump control
- etc...

Hardware calibration and bug hunt

- Polarity check of the magnet using beam measurement.
- Check BPM system (e.g. cabling, aging effect)
- Beam based alignment (BBA)
- etc...

Others

- Check validity of the model lattice and correct the model if needed.

Low emittance tuning (LET)

Target vertical emittance is < 5-10 pm.

Measurement Method

Optics measurement with orbit response analysis

- Horizontal-vertical (XY) coupling: Vertical leakage orbits induced by horizontal kicks.

- Dispersion: Response with RF frequency change.
- Beta function:

Orbit response analysis with steering kicks.

• ~60 BPMs (per ring) can be used with turn by turn (TBT) mode.

- Results are preliminary and not presented this report.

Orthogonal Correctors

Skew quadrupole(SkewQ) coil of sextupole magnet

Symmetric / asymmetric excitation of skew-corrector pare can be used as orthogonal correctors for coupling and vertical dispersion. The orthogonality allows us to reduce size of the problem.

Beam Based Alignment (BBA)

All quadrupole magnets have BPM.
 (~ 450 BPMs per ring)

- Calibrate BPM offset so that the beam passes through the magnetic center of the nearby magnet
- The measurement is carried out in spare moments from vacuum scrubbing.

Benefit from BBA

- Before BBA: Hit hardware limit of corrector strength.
- After BBA: Required corrector strength is remarkably reduced and allows us to further correction.

Beta-Beat before Correction

Beta and phase functions are extracted from orbit response.
 12 orbit responses are used.(6 per each direction)

Beta-Beat after Correction

Use quadrupole families distributed over the ring.

Horizontal Dispersion

Correction with horizontal orbital bumps at sextupoles.

Found that uncorrectable dispersion remains. The error source seems to be located in the Tsukuba straight section.

Quadrupoles in the Tsukuba section is additionally used.

A magnet name QLA2RP somehow shows the strongest corrector strength.

Horizontal Dispersion

The 21th KEKB Accelerator Review Committee

XY-Coupling Measurement

- Not so easy to extract optical coupling parameters R_{1-4} from closed orbit response.
- Measure vertical leakage orbits induced by 6 steering kicks.

XY-Coupling Correction

- Use the orthogonal correctors.
- The presented correction scheme effectively works, but...

XY-Coupling Correction

- Use the orthogonal correctors.
- The presented correction scheme effectively works, but...
- LER V. orbit by H. steering ZHQI6P Δy[µm] #1 ZHQI8P Δy[µm] 20 #2 ZHQR6P Δy [μm] #3 ZHQWZORP Δy[µm] #4 ZHQM60LP ∆y[µm] #5 ZHQM60RP Δy [μm] #6 - 1000 -500 500 1000 1500 .500 0 **Uncorrectable XY-coupling remains.**

Leakage Field from Lambertson Septum

- A Lambertson septum is used to deliver aborted beam to a beam dump.
- This magnet creates unexpected leakage field to stored beam line.

Historical Background

- The problem was founded at the previous KEKB commissioning already.
 - They installed permanent magnets to cure this problem (04/2000)

• The leakage field gets stronger in SuperKEKB.

- The vacuum chamber is replaced by an anti-chamber.
- A magnetic shielding system gets less effective due to clearance problem of the wider aperture. ——— Mimashi-san's talk?

A note from the previous KEKB commissioing

· LER Lambertson Musnetのもん Skew の磁場補正

作至は4/13午前終了。 (平平 多知同, 末前, 佐藤康)

Lambertson Magnetの上流と下流の27所に Permanet magnetを

設置した.

- 2.7 ====
- 1. GSIFLPとQSBFLP向ご最下流、 2. GS2FLPとQEAP.25向ごSF9道下流

Skew Qの方向は 28 >0の向き.

みて 20 のあま。 25所とも 6組の Skew Qの配置のC-1662。 1組とは ますあするC- Yike 2個 たっね」ま Sun おみこ 90の乾している。

強こは、Qの配置で(組またり、R~0.0016 ににし、C-V6(2会が SpA(er ISmm 2" 11代7353 5がせてまるで、 た値は上記がも少なり。 減少かたりとすると、6組で15所 R~0.01 程度となる。 75%に減少するとして、R~0.0075/AF、25形で<u>R~0.015</u>となる。

強度が不足の場合には 8/3 信まで、 磁石を増加させることができる。

Tunnel survey@03/17/2016

Cure to the Leakage Field

Activate two SkewQ coils installed in SF magnets using standby PS.

The 21th KEKB Accelerator Review Committee

Correction with the Additional SkewQ

• The vertical leakage orbit is reduced.

The 21th KEKB Accelerator Review Committee

For Further Improvement

- A hardware group proposes a permanent SkewQ using Ferrite magnets.
- Installed it last Wednesday (June 8).

Ferrite magnets installed with supporting system

Measurement before&after Installation

• Further improvement in the vertical leakage orbit.

The 21th KEKB Accelerator Review Committee

Vertical Dispersion after Installation

- A sharp peak of vertical dispersion is vanished.
- As a result RMS residual is reduced from 6 mm to 4 mm.

Vertical Emittance

LER

HER

Estimation with beam size measurement $\varepsilon_y \sim 120 \ \mathrm{pm}$

Estimation with measured optics $arepsilon_y \sim 10 ~\mathrm{pm}$

The exact value is still under discussion.

Tune Chromaticity - HER -

• Measure Betatron tune with changing RF frequency.

Good agreement between the real and model lattice.

Tune Chromaticity - LER -

• Measure Betatron tune with changing RF frequency.

- Large discrepancy compared with that of HER.
- Off-momentum beta and phase are measured and analyzed. No big error sources are founded so far.
- Need more study to clarify the source of the discrepancy.

Optics Correction Summary

	LER	HER
$\Delta \beta_x / \beta_x / \Delta \beta_y / \beta_y $ [%]	2/3	3 / 4
$\Delta \eta_x / \Delta \eta_y [{\rm mm}]$	13 / 4	17 / 5
$\Delta \xi_x \ / \ \Delta \xi_y$	2 / -4	< 1 / < 1
$\varepsilon_y \; [\mathrm{pm}]$	~12?	~10?

- Error of the linear chromaticity in LER is still mystery.
- The exact value of vertical emittance is still unknown.

Mission

Establish optics measurement and correction tools.

- Optics and orbit servers to control the magnet system.
- Continuous Closed orbit correction
- Tune Changer
- Optics measurement and correction
- Local-bump control
- etc...

Hardware calibration and bug hunt.

- Polarity check of the magnet using beam measurement.
- Check BPM system (e.g. cabling, aging effect)
- Beam based alignment (BBA)
- etc...

Others

- Check validity of the model lattice and correct the model if needed.

Low emittance tuning (LET)

Target vertical emittance is < 5-10 pm.

Status

Establish optics measurement and correction tools.

- Continuous Closed orbit correctied
 Tune Changer
 Optics measurement ar Contraction

Hardware calibration and bug hunt.

- Completed.

Others

Maybe related

Check valid Mystery of tune chromaticity in LER if needed.

Low emittance tuning (LET)

Reached ~10pm?, the exact value is still under discussion.

Thank you for listening

Machine Parameters in Phase I

	LER	HER	Units
Beam energy	4.000	7.007	GeV
Beam current	910	830	mA
# of bunches	1576	1576	
Bunch current	0.58	0.52	mA
Hor. emittance	1.8	4.6	
Momentum compaction	2.45 x 10 ⁻⁴	4.44 x 10 ⁻⁴	
Energy spread	7.5 x 10 ⁻⁴	6.3 x 10 ⁻⁴	
Total V _c	7.56	12.45	MV
Bunch length	4.6	5.3	mm
ν_{s}	-0.019	-0.025	
Tune v_x/v_y	44.59/44.63	45.57/43.61	
U ₀	1.76	2.43	
$\tau_{x,y}/\tau_x$	46/23	58/29	

Machine Parameters in Phase III

Machine Parameters

2013/July/29	LER	HER	unit	
E	4.000	7.007	GeV	
I	3.6	2.6	A	
Number of bunches	2,5			
Bunch Current	1.44	1.04	mA	
Circumference	3,016	m		
ε _x /ε _y	3.2(1.9)/8.64(2.8)	4.6(4.4)/12.9(1.5)	nm/pm	():zero current
Coupling	0.27	0.28		includes beam-beam
β_x^*/β_y^*	32/0.27	25/0.30	mm	
Crossing angle	83		mrad	
α _p	3.18x10 ⁻⁴	4.53x10 ⁻⁴		
σδ	8.10(7.73)x10 ⁻⁴	6.37(6.30)x10 ⁻⁴		():zero current
Vc	9.4	15.0	MV	
σ _z	6.0(5.0)	5(4.9)	mm	():zero current
Vs	-0.0244	-0.0280		
v_x/v_y	44.53/46.57	45.53/43.57		
Uo	1.86	2.43	MeV	
T _{x,y} /T _s	43.2/21.6	58.0/29.0	msec	
ξ _× /ξ _γ	0.0028/0.0881	0.0012/0.0807		
Luminosity	8x10 ³⁵		cm ⁻² s ⁻¹	