Beam Dynamics Issues in SuperKEKB

D. Zhou

With contributions from

KEK: T. Ishibashi, K. Ohmi, K. Oide, Y. Ohnishi, K. Shibata, H. Sugimoto, ... Cornell Univ.: D. Sagan IHEP: Y. Zhang SLAC: Y. Cai

The 20th KEKB Accelerator Review Committee, Feb. 23, 2015

Outline

- Impedance issues updates
- Interplay of beam-beam(BB) and lattice nonlinearity(LN)
- Space charge(SC) effects in LER
- Luminosity calculation for detuned lattices
- Benchmark of SAD
- Summary and Future plan

Outline

Impedance issues - updates

Interplay of beam-beam(BB) and lattice nonlinearity(LN)

- Space charge(SC) effects in LER
- Luminosity calculation for detuned lattices
- Benchmark of SAD
- Summary and Future plan

1. Impedance issues: LER

Clearing electrode

Grooved surfaces

From T. Ishibashi

Fig. 2. Clearing electrode installed in test chamber. The electrode and the feedthrough are connected by small piece of copper.

Ref. Y. Suetsugu et al., NIMA 598 (2009)

Ref. Y. Suetsugu et al., NIMA 604 (2009)

1. Impedance issues: LER

Pseudo-Green wake function

- σ_z=0.5mm
- Pumping ports and SR masks are negligible sources because of antechamber

• CSR and CWR (Wiggler radiation): CSRZ code with rectangular chamber

- 1. Impedance issues: LER
- > Wake potential with nominal bunch length
 - σ_z=5mm
 - Main sources: Collimators, Resistive wall, ARES cavity,

Bellows, MO flanges, Clearing electrodes

• CSR and CWR are not strong if no microbunching happens

1. Impedance issues: Impedance budget

> Impedance budget with $\sigma_z = 5/4.9$ mm:

• Loss factors, resistance and inductance are calculated at nominal bunch lengths

• Bellows, flanges and pumping ports contribute more impedance in HER than in LER

Table 2: Key parameters of SuperKEKB main rings for MWI simulations.

Parameter	LER	HER
Circumference (m)	3016.25	3016.25
Beam energy (GeV)	4	7.007
Bunch population (10 ¹⁰)	9.04	6.53
Nominal bunch length (mm)	5	4.9
Synchrotron tune	0.0244	0.028
Long. damping time (ms)	21.6	29.0
Energy spread (10-4)	8.1	6.37

Ref. D. Zhou et a	., IPAC14, TUPRI021
-------------------	---------------------

Component	LER			HER		
Component	$k_{ }$	R	L	$k_{ }$	R	L
ARES cavity	8.9	524	-	3.3	190	-
SC cavity	-	-	-	7.8	454	-
Collimator	1.1	62.4	13.0	5.3	309	10.8
Res. wall	3.9	231	5.7	5.9	340	8.2
Bellows	2.7	159	5.1	4.6	265	16.0
Flange	0.2	13.7	4.1	0.6	34.1	19.3
Pump. port	0.0	0.0	0.0	0.6	34.1	6.6
SR mask	0.0	0.0	0.0	0.4	21.4	0.7
IR duct	0.0	2.2	0.5	0.0	2.2	0.5
BPM	0.1	8.2	0.6	0.0	0.0	0.0
FB kicker	0.4	26.3	0.0	0.5	26.2	0.0
FB BPM	0.0	1.1	0.0	0.0	1.1	0.0
Long. kicker	1.8	105	1.2	-	-	-
Groove pipe	0.1	5.7	0.9	-	-	-
Electrode	0.0	2.2	2.3	-	-	-
Total	19.2	1141	33.4	29.0	1677	62.1

1. Impedance issues: MWI: LER

Simulations with input of Pseudo-Green wake:

- Use Warnock-Cai's VFP solver
- Collimators are important sources in bunch lengthening
- Simulated σ_z≈5.9mm @Design bunch current
- Simulated MWI threshold is around NP_{th}=1.2E11
- Interplay between CSR and conventional wakes?

1. Impedance issues: MWI: HER

Simulations with input of Pseudo-Green wake:

- Use Warnock-Cai's VFP solver
- Simulated σ_z≈5.8mm @Design bunch current
- Simulated MWI threshold is around NP_{th}=1.7E11
- Y. Cai's comment: CSR should not be important in

SuperKEKB (consider shielding and long bunch).

Outline

Impedance issues - updates

Interplay of beam-beam(BB) and lattice nonlinearity(LN)

- Space charge(SC) effects in LER
- Luminosity calculation for detuned lattices
- Benchmark of SAD
- Summary and Future plan

2. BB+LN: LER: Simplified IR

- Simplified lattice (sler_simple001.sad) by H. Sugimoto
 - No solenoid
- QC* magnets simplified: no offset, dipole and skew-quad correctors removed
- ► No significant lum. degradation at low current
- ► Solenoid and high-order terms in QC* are the main sources of lattice nonlinearity ³

► Realistic lattice

> Y. Zhang's idea: Look at the nonlinear X-Y coupling

sher-5767 vs ler-1689 in X direction

► Realistic lattice

Poincare map in y direction as function of X offset

sher-5767 vs ler-1689 in Y direction

Strong nonlinear X-Y coupling in LER

1 $x_0 = 0$ $x_0 = 5\sigma_x$ $x_0 = 2\sigma_x$ $x_0 = 3\sigma_x$ $x_0 = 4\sigma_x$ $x_0 = \sigma_x$ 0.5 م م/م sher d 0 -0.5 -1 -2 -1 -1 0 0 0 1 з 0 0 1 з -2 0 з -1 1 2 3 -1 - 1 2 з -2 -1 2 1 2 з - 4 2 - 1 2 .2 -2 _ 2 -1 y/ov y/σ_v y/o, y/σ., y/o_v y/σ_v 1 $x_0 = 3\sigma_x$ $x_0 = 4\sigma_x$ $x_0 = 2\sigma_x$ $x_0 = 5\sigma_y$ $x_0 = 0$ $x_0 = \sigma_x$ 0.5 ν b^{//α} sler 0 -0.5 -1 -2 -1 2 3 4 -1 1 з 0 y/σ_v y/σ_v y/σ_v y/σ., y/σ_v y/σ_v

Simplified LER lattice (From H. Sugimoto)

Confirm: solenoid and high-order terms in QC* magnets cause nonlinear X-Y coupling

Test by inserting a map of H=K*x²y into the LER lattice

```
GetMAIN["/ldata/SuperKEKB/Lattice/LER/sler_1689.sad"];
USE ASC;
b=ExtractBeamLine[];
b=Prepend[Drop[b,2],BeamLine[IP,BMBMP,SKEWSEXT]];
```

```
!!! Define external maps of skew sextupole (from Y. Zhang)
lambda = -66.6;
cosx = Cos[-1.571];
                               Phase advance
sinx = Sin[-1.571];
cosy = Cos[-1.351];
                               from IP
siny = Sin[-1.351];
 ExternalMap["TRACK",LINE["POSITION", "SKEWSEXT"],nt_,x_]:=(
 normalx = x[[1]]/Sqrt[32e-3];
                                            Normalized
 normalpx = x[[2]]*Sqrt[32e-3];
 normaly = x[[3]]/Sqrt[0.27e-3];
                                            coordinates
 normalpy = x[[4]]*Sqrt[0.27e-3];
 xxsext = cosx * normalx + sinx * normalpx;
 pxsext = -sinx * normalx + cosx * normalpx;
                                                 Phase shift
 yysext = cosy * normaly + siny * normalpy;
 pysext =-siny * normaly + cosy * normalpy;
 xx=xxsext;
 px=pxsext - 6*lambda * xxsext * yysext;
                                              skew-sext. kick
 yy=yysext;
 py=pysext - 3*lambda * xxsext * xxsext;
```

```
normalx = cosx * xx - sinx * px;
normalpx = sinx * xx + cosx * px;
normaly = cosy * yy - siny * py;
normalpy = siny * yy + cosy * py;
```

```
xx = normalx*Sqrt[32e-3];
px = normalpx/Sqrt[32e-3];
yy = normaly*Sqrt[0.27e-3];
py = normalpy/Sqrt[0.27e-3];
```

```
zz=x[[5]];
dd=x[[6]];
fl=x[[7]];
Return[{xx,px,yy,py,zz,dd,fl}];
);
```

Test by inserting a map of H=K*x²y into the LER lattice
 COD and oscillation amplitude in y are well suppressed as expected

2. BB+LN: Luminosity: LER

- ► Realistic lattice: lum. drops at low beam currents
- **Crab-waist**:
 - To cancel beam-beam driven resonances
 - Work well at high currents, but not well at low currents

2. BB+LN: Luminosity: LER

- ➤ Test by inserting a map of H=K*x²y into the LER lattice
- Skew-sext. map:
 - To cancel the nonlinear terms from solenoid and QC*
 - Work well at both low and high currents
 - Interplay of SC and lattice nonlin. also mitigated partially

2. BB+LN: LER: DA and lifetime

- Test by inserting a map of H=K*x²y into the LER lattice
- Skew-sext. map:
 - cause loss in DA and lifetime
 - not perfect

sler_1689

DA and Lifetime

Condition

- Assumption
 - Phase space distribution is upright during collisions.
 - (i.e. alphax=0, alphay=0, etax=0, ...)
- Fitting procedure
 - Gaussian fit is done for x, px, y, py, z, delta independently.
 - EMITX, EMITY, BX, BY, SIGZ, DP are obtained the fitting.
- The beambeam element is updated with the above 6 parameters.
- # of particles = 2000
- Case A: Update interval is 1000 turns Case B: Update interval is 10 turns, average of the last 10 turns Case C: Update interval is 1000 turns, exponentially weighted average of the all past data with damping rate of 1000 turns

Case D: Case C with interval = 1 turn

Case E: Case D with damping rate = 200 turns

sler_1689.sad

sher_5769.sad

sler_1689.sad

Luminosity vs. Beam Current(LER)

• Done with the parameters of Case D.

sher_5769.sad

Luminosity vs. Beam Current(HER)

• Done with the parameters of Case D.

Outline

Impedance issues - updates
 Interplay of beam-beam(BB) and lattice nonlinearity(LN)

Space charge(SC) effects in LER

- Luminosity calculation for detuned lattices
- Benchmark of SAD
- Summary and Future plan

➤ FMA shows betatron tunes of particles at the beam core are close to half-integer with only SC considered.

W/O SCE

W/ SCE

4th order 5th order 6th order 7th order

Detailed Studies are now ongoing.

- Optics matching
- Checking simulation code including SAD code itself.

FMA with beam distribution: $10\sigma_x \times 10\sigma_y$

sler_1684

LN + SC + BB

27

Luminosity: Tune scan w/ and w/o SC

- First try: optics matching w/o SC
- Compensate linear SC tune shift => Not successful
- Next try: optics matching w/ SC => Ongoing

Independent simulation (BBWS+SC) showed SC effects are not serious, but:

- No lattice nonlinearity
- Simple model for SC (Only consider tune spread due to SC)

From K. Ohmi

Outline

Impedance issues - updates
 Interplay of beam-beam(BB) and lattice nonlinearity(LN)

Space charge(SC) effects in LER

- Luminosity calculation for detuned lattices
- Benchmark of SAD
- Summary and Future plan

Detuned lattice: sler_1689_d4-8/sher_5767_d4-8

Parameters sy	1.1	Phase 2.x		Phase 3.x		•.
	symbol	LER	HER	LER	HER	unit
Energy	Е	4	7.007	4	7.007	GeV
#Bunches	nb	2500		2500		
Emittance	ε _x	2.2	5.2	3.2	4.6	nm
Coupling	ϵ_y/ϵ_x	2	2	0.27	0.28	%
Hor. beta at IP	βx°	128	100	32	25	mm
Ver. beta at IP	βy°	2.16	2.4	0.27	0.30	mm
Beam current	$I_{\rm b}$	1.0	0.8	3.6	2.6	А
Beam-beam	ξ_y	0.0240	0.0257	0.088	0.081	
Hor. beam size	σ_x°	16.8	22.8	10	11	μm
Ver. beam size	σ_y°	308	500	48	62	nm
Luminosity	L	1x10 ³⁴		8x10 ³⁵		cm ⁻² s ⁻¹

LER

β_{x} at IP	128	mm
β_{y} at IP	2.16	mm
Ι _b	1	А
n _b	2500	
ε _x	1.75	nm
ε _γ /ε _χ	2	%

HER

β_{X} at IP	100	mm
β_y at IP	2.40	mm
Ι _b	0.8	А
n _b	2500	
ε _x	4.5	nm
ε _γ /ε _x	2	%

From Y. Ohnishi

- > Assume: $\varepsilon_x = 1.75$ nm, coupling = 2%
- Space-charge is not important
- Lattice nonlinearity is not very important
- ► L=1×10³⁴cm⁻²s⁻¹ is promising
- ► L=10×10³⁴cm⁻²s⁻¹ is possible by increasing beam currents

- > Assume: $\varepsilon_x = 1.75$ nm, coupling = 2%
- Compare with the case of simplified IR
- Solenoid not to cause lum. loss

- > Assume: $\varepsilon_x = 1.75$ nm, coupling = 1%
- Space-charge is not important at low currents
- Lattice nonlinearity is not very important
- Decreasing coupling => Lum. gain but beam-beam limit appears at lower beam currents

► LER: Tolerance for errors in various optics parameters at IP (Assume 10% of lum. loss)

ε _γ /ε _x , β _γ *	2%, 2.2mm	1.5%, 1.1 mm	0.28%, 0.3 mm
Δx (μm)	77	30	7.2
Δy (μm)	0.35	0.2	0.025
R1 (mrad)	18	8.2	1.5
R2 (mm)	2.3	1.6	0.06
R3(m ⁻¹)	50	7.9	4.9
R4(rad)	3.7	0.93	0.21
ղ _y (mm)	0.33	0.23	0.017
η' _y (mrad)	1	0.44	0.08

From K. Ohmi

Outline

Impedance issues - updates
 Interplay of beam-beam(BB) and lattice nonlinearity(LN)

- Space charge(SC) effects in LER
- Luminosity calculation for detuned lattices
- Benchmark of SAD
- Summary and Future plan

5. Benchmark of SAD: sher_5764

> Optics parameters at IP with $\delta=0$

• In general, Bmad agrees well with SAD

Bmad: $\beta_x=0.02498209m$, $\alpha_x=-4.959E-5$, $v_x=45.5299896$, $D_x=-4.E-8m$, $D'_x=-8.16E-6$, $\beta_y=2.941E-4m$, $\alpha_y=-6.791E-5$, $v_y=43.56852721$, $D_y=-4.55E-9$, $D'_y=-2.4E-7$,

SAD:

 $\beta_x=0.025m$, $\alpha_x=-1.34E-12$, $v_x=45.53$, $D_x=-1.03E-13m$, $D'_x=-3.11E-13$, $\beta_y=3.E-4m$, $\alpha_y=-3.545E-13$, $v_y=43.57$, $D_y=2.963E-15$, $D'_y=-1.616E-12$,

5. Benchmark of SAD: sher_5764

- > Optics parameters at IP with $\delta = 0.002$
 - In general, Bmad agrees well with SAD

Bmad:

 β_x =0.32635028E-01m, α_x =0.65882408E-01, v_x =45.536646, D_x=-0.47815350E-03m, D'_x=-0.11870747E-01, β_y =0.31470442E-03m, α_y =0.13545109E-01, v_y =43.577108, D_y=0.64778741E-06, D'_y=0.23488780E-02,

SAD:

 β_x =.032642757m, α_x =.0658513493, v_x =45.536688655, D_x=-.0004781727, D'_x=-.01190317, β_y =.00032006m, α_y =.01341448, v_y =43.57852356, D_y=6.27523687e-07, D'_y=.0022601526,

5. Benchmark of SAD: FMA: sler_1684

> X-Y space

- Bmad and SAD give similar DA in size
- Discrepancy is due to use of different maps for high-order nonlinear terms in elements such as solenoid

5. Benchmark of SAD: FMA: sler_1684

> Tune space

• Discrepancy is due to use of different maps for high-order nonlinear terms in elements such as solenoid

5. Benchmark of SAD: luminosity calculation

- Compare with SCTR code (by K. Ohmi)
 - Test on simplified lattice (sler_simple001.sad)
 - Discrepancy observed
 - Need to compare in detail the nonlinear maps used in

SAD, SCTR and Bmad.

Outline

Impedance issues - updates
 Interplay of beam-beam(BB) and lattice nonlinearity(LN)

- Space charge(SC) effects in LER
- Luminosity calculation for detuned lattices
- Benchmark of SAD and Bmad
- Summary and Future plan

6. Summary

Impedance issues

- Impedance model updated
- MWI simulation updated
- ► BB+LN
 - Nonlinear amplitude-dependent X-Y coupling identified
- Solenoid and high-order terms in QC* magnets are the main sources of LN
 - Mitigation methods to be investigated
- Space charge
 - To be investigated
 - Optics matching with SC (need to upgrade SAD?)
- ► Lum. calculation for detuned optics
 - SC and LN likely not to cause lum. loss
 - L=1×10³⁴cm⁻²s⁻¹ is promising, L=10×10³⁴cm⁻²s⁻¹ is possible
- Benchmark of SAD
 - Successful and need more efforts

6. Summary

Interplay of various issues

Luminosity <= Emittance <= Beam-beam, Lattice nonlinearity,

Space charge, Impedances, Electron cloud, Intra-beam scattering, etc.

 => Dynamic aperture and lifetime => Beam commissioning => Injection, Detector back ground, Alignments, etc. => Tolerance for hardwares => ...

7. Future plan

Detailed analysis of lattice nonlinearity under an international collaboration program

- Cornell Univ.: D. Sagan (Bmad+PTC)
- SLAC: Y. Cai
- IHEP: Y. Zhang
- KEK: E. Forest, A. Morita, K. Ohmi, Y. Ohnishi, K. Oide, H.

Sugimoto, D. Zhou, etc.

- Collaboration with CEPC/FCC-ee teams
- ► High-priority tasks:
 - Global or local correction schemes for latt. nonlin.
 - SC compensation schemes
 - Better understand beam-beam physics for nano-beam scheme
 - More benchmark studies for SAD

•

Recommendations are welcome!

Thanks for your attention!