SuperKEKB 国内レビュー

2017.09.08 入射部G

SuperKEKBでの入射ビーム

SバンドRF電子銃による 5 nC 生成

- ・空間電荷が主 => 15-25 ps のパルス幅が必要
- 長期の安定運転
 上較的低いRF電界:<100MV/m
- 集束力が必要
 - RF電子銃からのビームをソレノイド集束でエミッタンス補償するは条件が難しい

- RF電界による集束力を用いる.

軸上結合空洞 : 例 BNLタイプ

<u> 軸外結合空洞: Disk and washer / Side couple 等</u>

エネルギー分散

Longitudinal wakefieldとRFの位相の最適値からのエネルギー分散

S-band RF-Gun の開発

- 空洞:電界による集束力を利用したRF電子銃
 - <u>Disk And Washer (DAW)</u> => 3-2
 - <u>Quasi Traveling Wave Side Couple</u> => A-1 0度ライン
 - <u>Cut Disk Structure</u>
 =>垂直レーザー入射による水平エミッタンスの低減
- カソード:長期安定性
 - 長寿命で中間の量子効率 (QE=10⁻⁴~10⁻³@266nm)
 - 固体カソード(薄膜でない) => 金属間化合物が有力
 - => 当初 LaB₆を採用したが短寿命 => <u>IrCe が非常に長寿命かつ QE>10⁻⁴</u> @266nm
- レーザー:長期運転かつ、Phase-IIIでは時間構造の制御
 フロントエンドには Ybファイバーレーザーを使用
 - LD励起の固体レーザー増幅器
 - Phase-II 用 Nd:YAG 増幅器
- => A-1 地上レーザー
- <u>Phase-III用</u> Yb:YAG Thin Disk 増幅器 => A-1 地下レーザー
 => 時間構造の制御 => エネルギー分散の低減

電子入射系

入射部

90 度ライン CDS RF gun

※CDSはカソード交換時のトラブルにより、QTWへの置き換えの可能性有

SuperKEKB HER (electron) Phase-I injection at 2016/6 GR_A1 (QTW RF-Gun) GU_AT (Thermal Electron Gun) レーザーは地下の Yb:YAG ディスクレーザー

Current(blue):2016/06/10 02:01、GR_A1 KEKB HER e- injection Ref(green):2016/05/21 03:26、GU_AT KEKB HER e- injection

GR_A1 KEKB HER e- injection

Current(blue): 2016/05/30 16:43, GU_AT KEKB HER e- injection Ref(green): 2016/05/21 03:26, GU_AT KEKB HER e- injection

GU_AT KEKB HER e- injection

18.9 psec (FWHM 10 shots)

11.68 ps (FWHM 10 shots)

エミッタンス測定結果まとめ

		X	error	У	error
Q scan	A1_C2_0	22.96	0.88	11.38	7.88
	A1_M	22.25	0.426	59.35	26.53
	A4_4(OFF chicane)	45.64	10.17	111.9	21.22
	A4_4(ON chicane)	47.67	52.9	73.64	86.54
	R0_D3	43.17	2.42	101.67	50.69
Wire scanner	B sector	1.69	66.1	59.61	24.72
	C sector	67.7	789.2	104.5	85.4

電荷量とエミッタンス

	Charge (nC)	Emittance H/V (mm•mrad)
Phase-II Design	2	150 (LINAC end)
Phase-III Design	4	20 / 20 (LINAC end)
QTW + Yb:YAG	5.6(50ps?)	28.3 / 26.4 (1.8 nC, 30ps)
QTW + Nd:YAG	2.2(25ps), 1.6(17ps)	23 / 11 (1 nC)
CDS + Nd:YAG	0.6 (17ps)	22 / 12 (0.5nC)

電荷量、エミッタンス共に、カソード上での不均一性が制限している レーザーのプロファイルとカソードのQEの均一性の改善が重要

またエミッタンスに関しては、測定方法の検討が必要 (Qスキャンでは最小のビームサイズの測定が課題)

RF電子銃空洞

Design of a quasi traveling wave side couple RF gun

Normal side couple structure

Quasi traveling wave sidecouple structure

RF-Gun comparison

Quasi traveling wave side couple RF gun

cathode

90度ライン 垂直入射用の RF電子銃

RF電子銃空洞からの反射

- QTWは水温を60℃にして運転中
- VSWR のインターロックを 1.6 に上げて運転中 カソードの熱コンタクトの改善(現在カソード交換中) 将来的に RF空洞の改良

⁰度ライン QTWからの反射

90度ライン CDSからの反射

IrCe カソード

カソード:金属間化合物 (LaB₆ or Ir₅Ce)

フォトカソード材料の開発状況(単結

神戸大学・菅原氏のご協力を得て、チョクラルスキー法による IrCe単結晶引き上げ試験を実施

【単結晶成長過程】

【単結晶IrCe】

【今後の研究開発方針】

- 結晶表面の量子効率の空間分布測定
- RF電子銃で利用可能な大口径単結晶の製作
- 量子効率が最大となる結晶方位の同定

Phase II 運転に向けて

【多結晶Ir7Ce2材】

【多結晶Ir₂Ce材】

* QTWSC-gunでの使用母材

利点

- 1/e寿命が2年以上
- RF gunでの運用実績(多)

問題点

多少量子効率の空間分布有り→
 ビーム品質に影響

利点

• 高量子効率 : 3.87 × 10⁻⁴

問題点

- 劈開性による加工の困難さ
 - → カソードロッドへの冷やしバメ
 - 加工困難
- 1/e寿命が未知

【カソード材料の選択】

Phase IIでは、目標電荷量が少ないため空間電荷効果の影響小

→ 電子ビームをRF-gunから長期安定供給できることを最優先。

十分な運用実績があるIr₇Ce₂を採用。Ir₂Ceはローカル測定を徹底する予定。

A1レーザー関連

RF電子銃用レーザーシステム

- ・ IrCe カソード用のパルスエネルギー
 - 500 µJ @ 266nm × 50 Hz, <u>2バンチ</u> (96ns間隔)
- Phase-II 2nC 向け (2017.10~)
 - 位置安定度 / プロファイルの改善
 - レーザーの光路の真空ダクトの改善
 - ・結晶の交換/再調整
 - ・大口径増幅モジュールの使用 (2列目)
 - ・モニター系の増強(結晶のダメージ等)
 - 長期運転のための 2重化
 - 発振器: 商用発振器(MENLO x 2(1台は12月~))と自作発振器
 - 増幅器:2列のNd:YAGの増幅器 (2列目にVCSELタイプの長寿命LDを採用)
- Phase-III 5nC 時間構造制御

– Chirped Pulse Amplification の導入

既存の MENLO 発振器→1064nm 生成 Self Phase Modulation (SPM)

VCSELタイプの Nd:YAG DPSS Moduleへの置換

プロファイル改善のための空間フィルター

Phase-III 用 Yb:YAG レーザー

Yb:YAG ディスクレーザー増幅器

Yb:YAG結晶のインジウム接合

Yb:YAG ディスクレーザー増幅器(冷却最終段) 冷却の効果

- ・ 準3準位の吸収の低減
- 熱伝導率が向上
- ・ 屈折率の温度依存性が低減
 => 増幅率の向上 熱レンズの抑制

Phase-II Schedule

- A-1 地上レーザー

- •2重化されたレーザー:発振器/Nd増幅器
- ・ 空間プロファイルの改善 / 光伝送系の改善

– カソードの量子効率の均一化

• Phase-III

– A-1 地下の Yb:YAG ディスクレーザー => 高出力 / 時間構造制御

		FY20)11		2012	FY20)12		2013	FY2	013		2014	FY20	14		2015	FY2	2015		2016	FY20	016		2017	FY20)17		2018	FY20	18		2019
		Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1
GR_32	RF-Gun Beamline Cathode Laser Comissioning	Ir5Ce		DAW Nd L	<u>LaB6</u> aser1		Ir5C	e Nd L	aser2												Yb-F	iber+ i	<mark>\</mark> d:YA	G									
GR_A1	RF-Gun Beamline Cathode Laser Comissioning						Yb L	DAW aser1	Ir5Ce 5Hz			SC-C Chic: Ir5Ce	QTW ane e 25Hz			Yb L	SC-(aser (i Ther	QTW2 Nev under mal (2 v IrCe rground Gun	catho	CDS de	with Nd A	90deg mplifie	ARC QE ii er (50	nprove Iz)	ment	YbL	aser3(Cryoge	enic)			
SuperK EKB Injectio n	Phase-1 Phase-2 Phase-3											Desi	gn	nt								1nC	inject	ion				2nC	low en	<mark>jittanc</mark>	e	4nC	low em
												Insta Oper	llation ation																				

今後の開発項目

- Phase-II
 - 電荷量、エミッタンスの改善
 - レーザープロファイルの改善
 - カソードの量子効率の均一化
 - 長期安定性
 - 新規に導入したレーザー光路の評価
 - ・RF空洞の改良(カソードの熱コンタクト、空洞の改良)
- Phase-III

レーザーの時間構造制御 (CBG による伸長 / 圧縮 + 波長分布制御方法)