SuperKEKB 国内レビュー

2017.09.08

入射部G

SuperKEKBでの入射ビーム

SuperKEKBにおける 入射ビームパラメーター

	KEKB obtained (e+ / e-)	SuperKEKB required (e+ / e-)	
Beam energy	3.5 GeV / 8.0 GeV	4.0 GeV / 7.0 GeV	
Bunch charge	$e- \rightarrow e+ / e-$ 10 \rightarrow 1.0 nC / 1.0 nC	$e- \rightarrow e+ / e-$ 10 \rightarrow 4.0 nC / 4.0 nC	
Beam emittance (γε)[1σ]	2100 μm / 300 μm	6 μm / 20 μm	

RF電子銃 4 nC 10 mm-mrad ビーム伝搬 + 10mm-mrad エミッタンス増加が許容

Quasi –travelling side couple RF-Gun (Yb-fiber and Nd/Yb solid laser system)

SバンドRF電子銃による 5 nC 生成

18

16

10

4

Emittance (mm mrad)

→ emittance(RF) x@5nC&90MV/m

20

Tlaser (ps)

10

emittance(SC) x@5nC&90MV/m

emittance(total) x@5nC&90MV/m

- 空間電荷が主 => 15-25 ps のパルス幅が必要
- ・ 長期の安定運転
 - 比較的低いRF電界: < 100MV/m
- ・ 集束力が必要
 - RF電子銃からのビームをソレノイド集束でエミッタンス補償するは条件が難しい
 - RF電界による集束力を用いる.

軸上結合空洞 : 例 BNLタイプ

<u> 軸外結合空洞: Disk and washer / Side couple 等</u>

エネルギー分散

Longitudinal wakefieldとRFの位相の最適値からのエネルギー分散

S-band RF-Gun の開発

- 空洞:電界による集束力を利用したRF電子銃
 - Disk And Washer (DAW)
 - Quasi Traveling Wave Side Couple => A-1 0度ライン
 - => A-1 90度ライン Cut Disk Structure =>垂直レーザー入射による水平エミッタンスの低減
- カソード:長期安定性
 - 長寿命で中間の量子効率 (QE=10⁻⁴~10⁻³@266nm)
 - 固体カソード(薄膜でない) => 金属間化合物が有力

 - => 当初 LaB₆を採用したが短寿命 => <u>IrCe が非常に長寿命かつ QE>10⁻⁴</u> @266nm
- レーザー: 長期運転かつ、Phase-IIIでは時間構造の制御
 - フロントエンドには Ybファイバーレーザーを使用
 - LD励起の固体レーザー増幅器
 - Phase-II 用 Nd:YAG 增幅器
- => A-1 地上レーザー

=> 3-2

• <u>Phase-III用</u> Yb:YAG Thin Disk 増幅器 => A-1 地下レーザー => 時間構造の制御 => エネルギー分散の低減

電子入射系

入射部

0 度ライン QTW RF gun

90 度ライン CDS RF gun

※CDSはカソード交換時のトラブルにより、QTWへの置き換えの可能性有

SuperKEKB HER (electron) Phase-I injection at 2016/6

GR_A1 (QTW RF-Gun) レーザーは地下の Yb:YAG ディスクレーザー

Current(blue): 2016/06/10 02:01, GR_A1 KEKB HER e-injection Ref(green): 2016/05/21 03:26, GU AT KEKB HER e-injection

GR_A1 KEKB HER e- injection

GU_AT (Thermal Electron Gun)

Current(blue): 2016/05/30 16:43, GU_AT KEKB HER e-injection Ref(green): 2016/05/21 03:26, GU_AT KEKB HER e-injection

GU_AT KEKB HER e- injection

<u>0 度ライン QTW RF gun</u> (レーザー斜め入射)

18.9 psec (FWHM 10 shots)

90 度ライン CDS RF gun (レーザー垂直入射)

11.68 ps (FWHM 10 shots)

春の運転

レーザー: 地上の Yb:Fiber + Nd:YAG 増幅器

エミッタンス測定結果まとめ

A1_C2_0 Q scan @ 1.25 nC

		X	error	У	error
Q scan	A1_C2_0	22.96	0.88	11.38	7.88
	A1_M	22.25	0.426	59.35	26.53
	A4_4(OFF chicane)	45.64	10.17	111.9	21.22
	A4_4(ON chicane)	47.67	52.9	73.64	86.54
	R0_D3	43.17	2.42	101.67	50.69
Wire scanner	B sector	1.69	66.1	59.61	24.72
	C sector	67.7	789.2	104.5	85.4

電荷量とエミッタンス

	Charge (nC)	Emittance H/V (mm•mrad)
Phase-II Design	2	150 (LINAC end)
Phase-III Design	4	20 / 20 (LINAC end)
QTW + Yb:YAG	5.6(50ps?)	28.3 / 26.4 (1.8 nC, 30ps)
QTW + Nd:YAG	2.2(25ps), 1.6(17ps)	23 / 11 (1 nC)
CDS + Nd:YAG	0.6 (17ps)	22 / 12 (0.5nC)

電荷量、エミッタンス共に、カソード上での不均一性が制限しているレーザーのプロファイルとカソードのQEの均一性の改善が重要

またエミッタンスに関しては、測定方法の検討が必要 (Qスキャンでは最小のビームサイズの測定が課題)

RF電子銃空洞

Pill-box cavity Accelerating field Beam Ez, Er/r Field **Focussing** Accelerating field field Accelerating field Given force Er/r Ŋ **Focussing** field

Annular coupled cavity with nose

Design of a quasi traveling wave side couple RF gun

Normal side couple structure

E-Field

Quasi traveling wave sidecouple structure

Quasi traveling wave side couple has stronger focusing and accelerated gradient than DAW.

RF-Gun comparison

Quasi traveling wave side couple RF gun

accelerating cavity

cathode

No reflection to klystron

90度ライン 垂直入射用の RF電子銃

RF電子銃空洞からの反射

- QTWは水温を60℃にして運転中
- VSWR のインターロックを 1.6 に上げて運転中 カソードの熱コンタクトの改善(現在カソード交換中) 将来的に RF空洞の改良

0度ライン QTWからの反射

90度ライン CDSからの反射

IrCe カソード

カソード:金属間化合物(LaB₆ or Ir₅Ce)

十分な QE (10⁻⁴)

大気中でも安定

加熱またはレーザー クリーニングによる回復

フォトカソード材料に関して

【イリジウムセリウム化合物】

融点	> 1900 °C
仕事関数	2.57 eV
利点①	大気中で安定
利点②	イオン衝撃に高耐性
利点③	表面汚染に高耐性

IrCe化合物材料製造プロセス

【光電子放出特性】

- 量子効率@266nm,RT : 1.54×10-4
- 1/e寿命 : > 2 year (A1 RF gun)

【カソード材料の改善点】

表面に量子効率の空間分布有り → ビーム品質の悪化につながる

【要素技術開発の方向性】

- ・ 単晶で晶析 → 単結晶成長
- 高量子効率化

フォトカソード材料の開発状況(多結晶)

【成分組成の最適化】

高量子効率化を目指して、 IrとCeの成分組成の最適化を実施。

- (1) これまで製作の組成: Ir₅Ce, Ir₇Ce₂
- (2) 新たに製作の組成: Ir₃Ce, Ir₂Ce (セリウムリッチ組成)

【材料開発について】

- 神戸大学・菅原氏のご協力で新組成の材料開発を実施。
- 小型テトラアーク炉を用いたアーク溶解を用いた製造方法を採用。

【量子効率測定結果】

Material	QE@266nm		
Ir ₅ Ce	1.87×10^{-4}		
Ir ₇ Ce ₂	2.24×10^{-4}		
Ir ₃ Ce	2.89×10^{-4}		
Ir ₂ Ce	3.87×10^{-4}		

Ce比率が多くなるにつれて、量子効率が向上

- \rightarrow Ir_2Ce が最大の量子効率。
- Ir₂Ceの表面状態を分析中
- ・ Ir₂Ceの寿命測定実施中

フォトカソード材料の開発状況(単結

神戸大学・菅原氏のご協力を得て、チョクラルスキー法による IrCe単結晶引き上げ試験を実施

【単結晶成長過程】

【単結晶IrCe】

【今後の研究開発方針】

- 結晶表面の量子効率の空間分布測定
- RF電子銃で利用可能な大口径単結晶の製作
- 量子効率が最大となる結晶方位の同定

Phase II 運転に向けて

【多結晶Ir7Ce2材】

【多結晶Ir₂Ce材】

* QTWSC-gunでの使用母材

利点

- 1/e寿命が2年以上
- RF gunでの運用実績(多)

問題点

多少量子効率の空間分布有り→ ビーム品質に影響

利点

• 高量子効率 : 3.87 × 10-4

問題点

- 劈開性による加工の困難さ
 - → カソードロッドへの冷やしバメ 加工困難
- 1/e寿命が未知

【カソード材料の選択】

Phase IIでは、目標電荷量が少ないため空間電荷効果の影響小

→ 電子ビームをRF-gunから長期安定供給できることを最優先。

十分な運用実績があるIr₇Ce₂を採用。Ir₂Ceはローカル測定を徹底する予定。

A1レーザー関連

RF電子銃用レーザーシステム

- IrCe カソード用のパルスエネルギー
 - 500 μJ @ 266nm × 50 Hz, 2バンチ (96ns間隔)
- Phase-II 2nC 向け (2017.10~)
 - 位置安定度 / プロファイルの改善
 - ・レーザーの光路の真空ダクトの改善
 - ・結晶の交換/再調整
 - ・ 大口径増幅モジュールの使用 (2列目)
 - ・ モニター系の増強 (結晶のダメージ等)
 - 長期運転のための2重化
 - 発振器: 商用発振器(MENLO x 2(1台は12月~))と自作発振器
 - 増幅器: 2列のNd:YAG の増幅器 (2列目に VCSEL タイプの長寿命LDを採用)
- Phase-III 5nC 時間構造制御
 - Yb ディスクレーザー
 - Chirped Pulse Amplification の導入

Properties of laser medium

Nd-doped

- 4 準位レーザーで閾値が低い
- ○808nm 高出力LDが利用可
- ○大型結晶も製造可能
- × 狭帯域 → 波形制御は不可能

τ~200μs, 40%

➡ A-1 地上レーザーハット

Yb-doped

- 広帯域 => 波形制御が可能
- 長い蛍光寿命 => 高出力化
- ファイバーレーザーの安定性
- 量子効率が高い
- × ASE が起きる
- ×3準位で閾値が高い => ディスクレーザー

→ A-1 地下レーザーハット

- 超広帯域
- 非常に高いダメージ閾値 ┐
- × 短い蛍光寿命 => Qスイッチレーザーが励起に必要

11111				
	Material	Nd:YAG	Yb:YAG	Ti:Sapphire
Fluorescence	Wavelength	1064nm	1030nm	660-1100nm
	Fluorescent time	230ms	960m s	3.2ms
	Spectral width	0.67nm	9.5nm	440nm
	Fourier minimum Pulse width	2.48ps	165fs	2.59fs
SQ	Wavelength	807.5nm	941nm	488nm
	Spectral width	1.5nm	21nm	200nm
	Quantum efficiency	76%	91%	55%

Nd:YAGレーザーシステム (A-1地上) の発振器 / 増幅器 2

既存の MENLO 発振器→1064nm 生成 Self Phase Modulation (SPM)

2倍波でのレーザーのビーム特性

ビームプロファイル(現在)

ビームプロファイル(春運転時)

VCSELタイプの Nd:YAG DPSS Moduleへの置換

プロファイル改善のための空間フィルター

Phase-III 用 Yb:YAG レーザー

Yb:YAG ディスクレーザー増幅器

Yb:YAG結晶のインジウム接合

Yb:YAG 室温接合 (中央大学の協力)

Yb:YAG ディスクレーザー増幅器(冷却最終段) 冷却の効果

- ・ 準3準位の吸収の低減
- 熱伝導率が向上
- 屈折率の温度依存性が低減=> 増幅率の向上 熱レンズの抑制

Phase-II

- Schedule
- A-1 地上レーザー
 - 2重化されたレーザー: 発振器 / Nd増幅器
 - ・空間プロファイルの改善/光伝送系の改善
- カソードの量子効率の均一化
- Phase-III
 - A-1 地下の Yb:YAG ディスクレーザー => 高出力 / 時間構造制御

今後の開発項目

- Phase-II
 - 電荷量、エミッタンスの改善
 - レーザープロファイルの改善
 - ・カソードの量子効率の均一化
 - 長期安定性
 - ・新規に導入したレーザー光路の評価
 - RF空洞の改良 (カソードの熱コンタクト、空洞の改良)
- Phase-III
 - レーザーの時間構造制御 (CBG による伸長 / 圧縮 + 波長分布制御方法)