			3		LTR, RTL Commissioning
	Measureme	nt of the WS	Requireme	nt from LER	14/Mar/2018
	Sector 3	Sector 5	Phase-2	Phase-3	22 nd SuperKEKB MAC
γεx (μm)	192±22.4	185±28.4	< 200	< 100	N. lida for the KCG Group
γε <mark>γ (μ</mark> m)	2.01±0.363	1.72±0.704	< 40	< 15	
Charge (nC)	w FC	1.4	0.5	4.0	

Contents

The DR Complex 1.

Conclusion

Sector1

4.

- Positron <u>Damping Ring(DR)</u>
- Linac To Ring(LTR) : The injection line of the DR
- <u>Ring To Linac(RTL)</u> : The extraction line of the DR _
- 2. Commissioning of the LTR

After the DR and RTL commissioning, the beam was dumped to the east dump at the end of LINAC.

1. DR complex

The DR damps the emittance of the e+ beam to inject into the LER.

The positron beam from Flux Concentrator(FC) has a huge longitudinal distribution.

LTR: The energy spread(5%) should be reduced within the energy acceptance of the DR(1.5%) with the Energy Compression System(ECS) in the LTR.

RTL: The bunch length extracted from the DR(6.7mm) should be shortened(0.65mm) to fit the LINAC S-band system with the Bunch Compression System(BCS) in the RTL.

DR Complex Distributions of the longitudinal phase space at the entrance and exit of the ECS and the BCS

The energy spread and the bunch length are big compared with the S-band of the ECS and the BCS

DR Complex

Parameters of the ECS and the BCS

	E	ECS BCS						
	Before ECS	After ECS	Before BCS	After BCS				
Wisth of z	W=±8mm	±30mm	σz=6.6mm	σz=1.3mm				
Width of $\boldsymbol{\delta}$	W=±5%	±1.5%	σδ=0.055%	σδ=0.80%				
R56 [m]	- 0	.61	- 1.05					
Vc [MV]	4	1	21.5					

Google

Because the borderline of KEK is close, the beam loss outside of LINAC should be low.

2. Commissioning of the LTR

- The initial commissioning of the LTR started on Jan. 23rd.
 - The beam was reached to the end of the LTR on Jan. 24^{th} .
- The charge from LINAC was 0.75nC/bunch without the FC.
- The beam loss outside of LINAC should be low because the borderline of KEK is close.
- The R₅₆ of the 1st arc and an accelerating structure consist the <u>Energy Compression System</u> (ECS).
 - The energy spread (σ_{δ}) of the injection beam to the DR should be smaller than the energy acceptance, ±1.5%. The entrance of the DR
 - The ECS compresses σ_{δ} from ±5% to ±1.5%.
- The 4 collimators cut the low energy tail in the LTR.
- The magnets of the LTR and the RTL are set at the energy of the DR.

Commissioning of the LTR Tuning of the LTR

- 1. We made the "core beam" to adjust so that the centers of beam energy and dz pass through the center of beam pipes.
 - In this time, the core beam was made by lowering the energy of the beam and cutting deeply the tail of energy with the collimators.
- 2. The zero crossing of the ECS was scanned by using the core beam.
- 3. Finally, the energy of the beam was increased and the energy tail under -5% was cut with the collimators.

By the way,

In the case of the core beam,

the energy spreads looks same in the three cases.

The core beam is independent on the ECS phase.

	FC : Stand-by	FC : 5kV
γεχ [μm]	245.5	288.5
γε y [μm]	241.8	255.8
BMAGx	1.58	1.00
BMAGy	1.53	1.01

No change was observed with FC Off and On.

The signals of both of loss monitors and arc sensers of RF system are small enough.

Commissioning of the LTR

Tuning items of the LTR

	LTR Study	Responsibles
1.	Dispersion Fine Tuning	Y. Seimiya, N. Iida
2.	3-BPM measurement	T. Ishibashi, H. Sugimoto
3.	Local Bump Study	Y. Ohnishi, R. Ueki
4.	Parameter Matching (Wire Scanner)	N. Iida, Y. Ohnishi, Y. Yano
5.	QuadBPM (Beam Based Alignment)	H. Sugimura, H. Sugimoto
6.	ECS Fine Tuning	Y. Seimiya, N. Iida
	Tuning of ECS Pulse Timing	LINAC Operator
7.	Single kick response measurement	M. Kikuchi

Many new rookies (more than 11) joined the commissioning of the LTR.

3. Commissioning of the RTL

- 1. The DR Commissioning started on Feb. 8th.
 - The RTL commissioning was immediately done, and the bunch compressed beam reached to the east dump of LINAC in Feb. 10th.
 - BCS Tuning <- Done
- 3. Dispersion measurement and correction
 - 1st arc <- Not yet
 - for the injection kicker trouble and the reduction of electric power due to the trouble of discharge.

Sector 5

10 1273/

- 2nd arc <- Done very well
- 4. Emittance measurement with wire scanners at the LINAC

Sector 4

Sector 3

e+ DR

TR

Sector 3

50

RTL

出野斑

– Sector 5

Return charge to the LINAC

The charge returned from the RTL is almost same as that going to the LTR. Even if the energy tail will be cut severly (20% in the maximum situation), the charge is enough for the Phase-2.

The leak of the horizontal dispersion decreased by a quarter. The Fudge Factor of the quads in the 2^{nd} arc is 0.955.

Commissioning of the RTL Emittance Measurement with the Wire Scanners in Sector 3

Emittance before and after the dispersion correction was measured by the WS in the sector 3

		Sector 3			DR(Optics Calculation)
		Before correction	After correct	tion	
γεχ	(µm)	293±44.5	192±22.4		63.9
γεγ	(µm)	1.84±0.163	2.01±0.363		XY-coupling<=3.15±0.57%
The	horizontal	emittance is decreas	sed 2/3.	The XY	-coupling is estimated as less

Commissioning of the RTL

Emittance Measurement with the Wire Scanners in Sector 5

	Measurem	nent of WS	Requirement from LER							
	Sector 3	Sector 5	Phase-2	Phase-3						
γε <mark>χ (μ</mark> m)	192±22.4	185±28.4	< 200	< 100						
γε <mark>γ (μm)</mark>	2.01±0.363	1.72±0.704	< 40	< 15						

- No emittance growth is observed with 0.75nC e+ beam between sector 3 and sector 5.
- The horizontal emittance satisfies the requrement of the Phase-2 but not Phase-3 yet.

	H [m]	δ	Δε[m]	ε [m]	Δε/ε
Х	6.08e-5	E Eo 4	1.84e-11	29.7e-9 (from DR Optics calculation)	6.2e-4
Y	4.49e-5	5.58-4	1.36e-11	9.3e-10 (from WS measurement)	1.5e-3

The increments of emittance from the dispersions at the extraction point affect negligibly small to the emittance growth.

The source of the remaining horizontal emittance grouth is the dispersion leak from the 1st arc.

List to do

- 1. The orbit feedbacks should be worked at,
 - the entrance of the LTR
 - the end of the LTR
 - the upstream of the 2nd arc of the RTL
- 2. Dispersion correction of the 1st arc in the RTL
 - By changing the beam energy of the DR
 - Emittance measurement with the wire scanner at the sector 3 and 5
- 3. Bunch length measurement with the streak camera at the sector 3
- 4. Energy spread measurement with the screen monitor(YAG) at the end of LINAC or with the wire scanner at the beam transport line of the LER.
 - Requarement : $3\sigma < 0.5\%$
- 5. The beam based alignment should be done for the remained BPMs.
- 6. The bunch charge measurements with BPMs of LTR and RTL should be corrected.

Conclusion

- The first commissioning of the LTR, DR, and RTL were succesfully done.
 - The LTR commissioning

_

- The beam tuning is almost done
- The RTL commissioning
 - The emitttances satisfy the requirements of the Phase-2 but not Phase-3.
 - The dispersion of the 1st arc should be corrected during the Phase-2.

Thank you for listening.

Parameters		Unit	M. Kikuchi,
Energy	1.1	GeV	H. Sugimoto
Circumference	135.498295	m	
# of bunch	2		
# of bunch / train	2		
Max. stored current	70.8	mA	
Energy loss per turn	0.0847	MV	
Damping time $(\tau_x / \tau_y / \tau_z)$	11.5 / 11.7 / 5.8	msec	
Emittance $(\varepsilon_x/\varepsilon_y/\varepsilon_z)$	41.5 / 2.1 / 3600	nm	
ϵ_y / ϵ_x	5	%	
v_x / v_y	8.240 / 7.265		
Energy spread (1σ)	0.055	%	
Bunch length (1σ)	6.6	mm	
Mom. Comp. factor	0.0141		
# of cells	32		
Total RF voltage	1.4	MV	8nC/bun
RF frequency	509	MHz	spdr_0026.s

-0.002

Schedule of LTR Commissioning

The beam passed to the end of LTR and is roughly tuned in two days !

ETR Fine tuning		MONTH			Jan.												
	Beam Shutter	DAY	20 21	22	23	24	25 2	6 27	28 2	9 30) 31	1	2	34	5	6	
* LTR tuning	(BSN2 Closed)	2. Magnets on		_				_								7	_
		3. (1) Beam Gate Check											do	ne			
		(2) Orbit Correction w St. & SCM											pla	ann	ed		
		Magnet Check															
		Energy Tuning	_														
		(3) BPM Timing															
		(3) BPM Mapping															
		(4) Loss monitor															
		(5) Collimator test	_														
		4. ECS On, Find zero crossing and small δ w SCM															
		LINAC Trouble				_		_									
* LTR Fine tuning		5. Dispersion measurement															
		6. LTR optics measurement by single kick															
		7. 3-BPM															1
		8. WireScanner Measurement & Matching															
		9. Quad BPM															
		LTR Orbit Fine Tuning															
		LINAC Study (RF-Gun)															
* Injection tuning	(BSN2 Opened)	Timing Septum & Kicker															
			•		++												

How tuning?

- 1. Making core beam
 - The beam is cut by the collimators at the 1st arc, and the energy is fixed.
 - The "choice beam" should pass the center of the orbit of the LTR.
 - The phase of the accelerating structure of the ECS should be fixed to the zerocrossing with the "core beam".
 - The energy of the 2nd arc is fit to the "core beam"

2. The injection tunings are done with the "core beam"

How tuning?

- 3. Shift to the operation beam
 - Shift the beam energy up to 5%
 - The lower energy tail (- 5%) is cut by the collimators.

Y. Seimiya

LTR Dispersion correction

Wire Scanner測定(3セクター)補正前後

50 52

1000 100 46 48 50 51 52 53 81 20 30 81.5 Wire Position(mm) Wire Position(mm) Select Matching zone03/08/2018 18:16:46 on localhost:31.0

Wire Scanner測定 (5セクター) 補正後

File Edit Window

Wire Scanner測定(5セクター)補正後

Expected value of the RMS of a wire

The expected value of the RMS of a wire with radius "a" can be written as follows;

Dispersion leak does not appear downstream of the BCS

Even if the dispersions leak to the RTL, after BCS, the energy conponents rotate to the bunch length.

Injection/Extraction kickers and septa