

QCS IR magnets

N. Ohuchi On behalf of the SuperKEKB IR group

- 1. IR magnets
- 2. Construction status of QCS system
- 3. Magnetic field measurement results
- 4. Some results from the cold tests
- 5. Summary

Overview of IR magnets

QCS-L Cryostat

QCS-R Cryostat

4 SC main quadrupole magnets: 1 collared magnet, 3 yoked magnets 16 SC correctors: a1, b1, a2, b4

- 4 SC leak field cancel magnets: b3, b4, b5, b6
- 1 compensation solenoid

4 SC main quadrupole magnets: 1 collared magnet, 3 yoked magnets
19 SC correctors: a1, b1, a2, a3, b3, b4
4 SC leak field cancel magnets: b3, b4, b5, b6
3 compensation solenoid

- Main quadrupoles [QC1, QC2]
 - Forming final beam focusing system with quadrupole doublets.

• Correctors $[a_1, b_1, a_2, a_3, b_3, b_4]$

- a_1 , b_1 , a_2 : magnetic alignment of the magnetic center and the mid-plane phase angle of main quadruple.
- a_3 , b_3 : correction of sextupoles induced by magnet construction errors.
- b_4 : increasing the dynamic transverse aperture (increasing the Touschek life time).

• Compensation solenoid[ESR, ESL]

- Canceling the integral solenoid field by the particle detector (Belle II).
- By tuning the B_z profile, the beam vertical emittance can be minimized.
- The compensation solenoids are designed to be overlaid on the main quadrupoles and correctors.
- ESR consists of three solenoid magnets of ESR1, ESR2 and ESR3.
- Leak field cancel coils $[b_3, b_4, b_5, b_6]$
 - Canceling the leak field on the electron beam line from QC1P (collared magnet).
- Total number of the SC devices in two cryostats = 55

Cross section design of main quadrupoles [QC1, QC2]

- The quadrupole magnets are designed with the two layer coils (double pane cake design).
- In the early design, the smaller young modulus of the SC cable than the real cable were applied.
 - As the result, 10 units sextupole field by the assembly error of the magnet was induced.
 - All magnet cross sections were redesigned, and a_3 and b_3 correctors have been installed in the right cryostat.

• Main quadrupoles [QC1, QC2]

- QC1L(R)P, QC2L(R)P for the left (right) side cryostat to IP and for the positron beam line.

QC1L(R)E, QC2L(R)E for the left (right) side cryostat to IP and for the electron beam line.

	Integral field gradient, (T/m)•m	Magnet type	Z pos. from IP, mm	θ, mrad	ΔX , mm	ΔY, mm
QC2RE	13.58 [32.41 T/m × 0.419m]	Iron Yoke	2925	0	-0.7	0
QC2RP	11.56 [26.28 × 0.410]	Permendur Yoke	1925	-2.114	0	-1.0
QC1RE	26.45 [70.89×0.373]	Permendur Yoke	1410	0	-0.7	0
QC1RP	22.98 [68.89×0.334]	No Yoke	935	7.204	0	-1.0
QC1LP	22.97 [68.94×0.334]	No Yoke	-935	-13.65	0	-1.5
QC1LE	26.94 [72.21×0.373]	Permendur Yoke	-1410	0	+0.7	0
QC2LP	11.50 [28.05 × 0.410]	Permendur Yoke	-1925	-3.725	0	-1.5
QC2LE	15.27 [28.44×0.537]	Iron Yoke	-2700	0	+0.7	0

Correctors

- The SC correctors were designed and directly wound on the support bobbin (helium inner vessel) by BNL under the US-Japan research collaboration
 - Direct winding method
 - Multi-layer coil [maximum layer=4 by limiting with the gap distance between the main quadrupole magnet and the helium inner vessel]
 - Some correctors were assembled on the outer surface of the main quadrupole magnets.
- Each corrector magnet is excited by the individual bipolar power supply.

QCSL- Main Quadrupole	Corrector
QC1LP	a_1, b_1, a_2, b_4
QC2LP	a_1, b_1, a_2, b_4
QC1LE	a_1, b_1, a_2, b_4
QC2LE	a_1, b_1, a_2, b_4

Assembly of QC2LE and correctorseview 2018

Maximum field at 403 A= 3. Stored Energy= 118 kJ K1 compensation solenoid Magnet length= 1575 mm Maximum field at 450 A=3.19 T Stored Energy= 244 kJ Cold diode quench protection system

SuperKEKB Review 2018

QC1P leak field cancel magnets

- QC1P for the e+ beam line is non-iron magnet and the e- beam line is very close to QC1P. The leak fields from QC1P go through the e- beam line.
- **B**₃, **B**₄, **B**₅ and **B**₆ components of the leak fields are designed to be canceled with the SC cancel magnets.
- By rolling QC1P in design and lower level of the QC1P axis than HER beam line, skew field components are induced. The cancel magnets are rotated to cancel the skew components in design.
- B_1 and B_2 components are not canceled, and they are included in the optics calculation.

Construction status of IR magnets

- Construction and tests of QCS system on the SuperKEKB beam lines
 - August 1st, **2016**: Setting the QCSL cryostat on the beam lines in the SuperKEKB IR
 - September 1st, **2016** ~ October 20th, **2016**: Construction of the cryogenic system for QCSL
 - November 7th, 2016 ~ December 22nd, 2016: Cool down test of the QCSL cryogenic system and the excitation tests of the SC magnets
 - November 1st, **2016**: During the final construction stage of ESR1, electrical insulation faults was found. The positions and the cause of the trouble were specified at Nov. 5th, 2016.
 - January 16th, **2017**: In the final electrical tests of the QCSR magnet-cryostat, the electrical insulation fault was detected at the cold diode for the quench protection of ESR1. The fault was repaired at January 17th, 2017.
 - January 31st, **2017**: The final electrical tests of the QCSR magnet-cryostat were passed in Mitsubishi.
 - February 13th, **201**7: Setting the QCSR cryostat on the beam lines in the SuperKEKB IR
 - March, **2017**: Construction of the cryogenic system for QCSR
 - April 11th, 2017: Moving the Belle-II detector at the beam interaction point
 - May ~ August, 2017: Commissioning the QCSL/QCSR systems, excitation tests and magnetic field measurements of all magnets
 - September ~ December, **2017**: Final preparation of the system for the beam operation
 - Exchange of the cryostat inner pipe of the cryostat with the real beam pipes
 - Modification of the current lead ends for a safety operation of the SC magnets
 - Repairing the cold value of the cold box for the QCSR system to recover the cooling power

Super

Installation and alignment of QCSL/R cryostats

- Using the references on the cryostats, we aligned the cryostats to the HER/LER beam lines, which are defined by the normal conducting magnets and monuments on the tunnel walls/floor.
- The cryostats were in their final positions, but without BELLE II detector.
- The RMS of the best fits to the target coordinates are 0.2-0.3 mm.
 - Target position coordinates for QCSL are given by the QCS group. They are obtained from the SSW measurements carried out on the measurement bench.
 - The design coordinates from the cryostat drawing are used for aligning the QCSR cryostat, as they did not have time for SSW measurement on the measurement bench before installation.

Misalignment concerns

- Beam line floor deformation (mainly sinking) after BELLE II roll-in is seen.
- QCSL cryostat was disassembled for the QCS beam pipe installation after the SSW measurements at the beam line. A very quick survey with limited view (not many data points) suggests that the front and back parts of the cryostat are twisted by a couple of hundred mrad. No SSW after reassembling. Not confirmed.

QCS System in Tsukuba Exper. Hall

• Construction of final focus magnet system in SuperKEKB IR was completed in March, 2017.

Super

Completed QCS systems

• Single Stretched Wire measurement (SSW)

 Measurements of magnetic field centers and angles of the quadrupole field of QC1 and QC2

Harmonic coil measurement

- Magnetic field quality measurements of the SC magnets
- Higher order multipole field profile measurements
- Magnetic field strength measurements as the function of the transport magnet current
 - 6 harmonic coils were prepared for the integral field measurements and the field scan measurements (*L*=20 mm).

3 axis-hall probe measurement

- Solenoid field profile measurements along the beam lines
 - Tuning the field profiles along the beam lines to complete the cancelation of the integral Belle solenoid field.

SSW measurement

SSW measurement system in the IR

- Two magnet-cryostats of QCSL/R were aligned to the beam lines with the targets of the cryostats.
- A BeCu single wire of ϕ 0.1 mm, which was aligned to the design beam line, was stretched through QCSR and QCSL cryostat bores.
- The measurements were performed with operating the Belle SC solenoid at 1.5 T, and ESL and ESR1 solenoids.
 - The measured data include the displacement by the electro-magnetic forces between solenoids and magnetic components in the cryostats.

SSW measurement

- The quadrupole field centers and angles of 8 SC quadrupole magnets in the QCSL/R magnet-cryostats from June 19, 2017 to June 30, 2017.
 - The FNAL research collaborator, Mr. Joseph DiMarco, was invited to complete the measurements.
 - The measurements were successfully completed, and the measured results were shown in the graph below.
 - In order to exclude the solenoid field effect on the measurements, the transport currents to the magnets in the operation mode were AC 9 A.

 Measured magnetic center shifts to the design values and field angles to the horizontal planes of the 8 main quadrupoles as follows:

	QC1LP	QC2LP	QC1RP	QC2RP
Δx , mm	0.014	-0.335	0.684	0.486
Δ y, mm	-0.211	-0.692	-0.296	0.042
$\Delta heta$, mrad	-15.32 (-13.65)	-7.77 (-3.725)	9.22 (7.204)	-3.84 (-2.114)

	QC1LE	QC2LE	QC1RE	QC2RE
Δx , mm	-0.212	0.129	0.245	0.079
Δ y, mm	-0.286	-0.535	-0.373	-0.581
$\Delta heta$, mrad	-1.60 (0.0)	-1.54 (0.0)	-0.14 (0.0)	-0.73 (0.0)

The magnetic field measurements were performed under the conditions of operating the Belle solenoid and ESL/ESR solenoids.

- Electro-magnetic forces acting on the cryostats:
 - QCSL = 52.6 kN, QCSR=35.7 kN (calculation)

Harmonic coil measurements

- Measurements of harmonic coils in **SuperKEKB IR** (in July, 2017)
 - One unit of measurement system has two harmonic coils.
 - The harmonic coils are moved by the mover, the movement is measured by the digital scaler.
 - Two sets of the mover system were prepared for shortening the measurement period.

For QC1P and QC1E L=600 mm and 20 mm, R=12 mm

For QC2P L=700 mm and 20 mm, R=25 mm

For QC2E L=800 mm and 20 mm, R=33 mm

SuperKEKB Review 2018

(measured under solenoid fields)

The strengths of the multipole field components are normalized with the B_2 field strength.

	QC1LP at R=10mm, I=1.71 kA		QC1RP at R=10mm, I=1.71kA		QC2LP at R=30mm, I=0.91kA		QC2RP at R=30mm, I=0.91kA	
n	<i>a</i> _n	b _n	a _n	b _n	a _n	b _n	a _n	b _n
1	790.2	232.9	1265.4	-140.25	399.7	13.8	-70.01	40.84
2	0.	10000.	0.	10000.	0.	-10000.	0.	-10000.
3	-0.07	1.69	0.65	-0.91	-1.03	2.61	2.58	-0.09
4	0.52	0.01	-0.94	-0.66	0.20	-0.20	-1.48	-0.22
5	0.01	-0.38	-0.35	0.35	0.92	0.32	-0.21	-0.07
6	-0.28	-0.10	0.37	-0.06	0.31	-3.58	0.62	-4.69
7	0.04	0.05	0.01	-0.06	-0.04	0.04	-0.21	0.00
8	0.07	-0.03	-0.04	-0.04	0.07	0.03	-0.07	0.07
9	0.10	-0.06	-0.01	0.05	-0.48	0.03	-0.12	-0.20
10	-0.03	-0.18	0.04	-0.18	0.21	0.86	0.34	1.77

Super Integral field quality of the QC1 and QC2 magnets

(measured under solenoid fields)

	QC1LE at R=15mm, I=1.71kA		QC: at R=15mm	QC1RE at R=15mm, I=1.71kA		2LE n, I=1.11kA	QC2 at R=35mm	2RE n, I=1.11kA
n	a _n	b _n	a _n	b _n	a _n	b _n	a _n	b _n
1	191.7	-313.2	131.2	-145.4	-12.8	170.64	15.4 (38.9)	114.0 (106.5)
2	0.	10000.	0.	10000.	0.	-10000.	0.	-10000.
3	-0.59	0.72	0.97	-0.47	-1.44	-1.25	-18.9 (-4.79)	2.84 (-2.90)
4	0.21	-0.24	-0.05	-0.18	-1.88	-0.29	8.09 (0.60)	-0.66 (0.04)
5	-0.20	-0.28	0.02	0.03	-0.63	0.16	-0.42 (0.40)	-0.21 (-0.10)
6	0.01	1.04	-0.07	0.92	0.18	-4.66	-0.22 (-0.19)	-1.60 (-1.95)
7	0.02	0.05	0.10	-0.02	-0.01	0.02	-0.11 (-0.05)	0.20 (0.14)
8	-0.09	-0.10	0.02	-0.01	-0.22	0.06	-0.06 (0.05)	0.16 (0.11)
9	-0.22	0.57	0.08	0.17	-0.20	-0.17	0.02 (-0.03)	-0.25 (-0.17)
10	-0.09	-0.08	-0.02	-0.60	0.08	2.22	0.06 (0.05)	1.80 (1.80)
					•		$\langle \rangle$	$\langle \rangle$

Without excitation of solenoids

6

Operation currents of the QC1/2 magnets

Current dependence of the magnetic field of QC1RE

The magnet excitation parameters are defined by the 5th polynomial fitting with the data during up-ramping.

Super

Magnetic field profile of the QC1/2 magnets

Measured results:QC1LE magnetic field profile along the HER beam line

Super

Magnetic field profile of the QC1/2 magnets

Measured results:QC2RE magnetic field profile along the HER beam line

Super

QCSL: From the measurement results of the harmonic coil and SSW (-1.6 mrad) for QC1LE, the scan data by the short harmonic coil were corrected.

Super

KEKB

25

B4

1200

1300

B4

1300

1200

QCSL

- Σ A_5 =1.456 × 10⁻⁵ Tm @ R=10mm

QC1LP I_{op}=1601.6 A, **ΣB₆=0**:

- B_6 : operating current = 14.442 A
- $-\Sigma A_6 = -8.018 \times 10^{-6}$ Tm @ R=10mm

QCSR: From the measurement results of the harmonic coil and SSW (-0.14 mrad) for QC1RE, the scan data by the short harmonic coil were corrected.

Super

QCSR

Magnetic field measurements of the correctors

	Corrector	Specific requirement	Measurements at 60 A (on the beam line)	Allowable alignment at \pm 60 A
00110	a1	0.016 Tm @ R=10mm	0.0177 Tm	\pm 0.73 mm
	b1	0.016 Tm	0.0146 Tm	\pm 0.63 mm
QUILP	a2	0.64 T	0.801 T	\pm 17.4 mrad
	b4	60 T/m ²	295 T/m ²	-
QC2LP	a1	0.03 Tm @ R=30mm	0.0350 Tm	\pm 1.18 mm
	b1	0.03 Tm	0.0409 Tm	± 2.33 mm
	a2	0.31 T	0.640 T	\pm 27.9 mrad
	b4	60 T/m ²	107.7 T/m ²	-
	al	0.027 Tm @ R=15mm	0.0323 Tm	± 0.92 mm
00115	b1	0.046 Tm	0.0551 Tm	\pm 0.93 mm
QUILE	a2	0.75 T	0.932 T	\pm 17.3 mrad
	b4	60 T/m ²	730 T/m ²	_
	a1	0.015 Tm @ R=35mm	0.0400 Tm	± 2.52 mm
QC2LE	b1	0.015 Tm	0.0442 Tm	± 2.89 mm
	a2	0.37 T	0.753 T	\pm 24.7 mrad
	b4	60 T/m ²	142.9 T/m ²	-

Magnetic field measurements of the correctors

	Corrector	Optics requirement	Measurements at 60 A (on the beam line)	Allowable alignment at ± 60 A
QC1RP	a1	0.016 Tm	0.0174 Tm	\pm 0.57mm
	b1	0.016 Tm	0.0159 Tm	\pm 0.53 mm
	a2	0.64 T	0.798 T	\pm 17.4 mrad
	a3-> b3	5.1 T/m	9.57 T/m	_
	b4	60 T/m ²	268 T/m ²	_
	a1	0.03 Tm	0.0578 Tm	± 3.99 mm
	b1	0.03 Tm	0.0362 Tm	\pm 1.28 mm
QCZRP	a2	0.31 T	0.630 T	\pm 27.3 mrad
	a3	0.905 T/m	1.087 T/m ²	-
	a1	0.027 Tm	0.0313 Tm	\pm 0.96 mm
QC1RE	b1	0.046 Tm	0.0550 Tm	\pm 0.92 mm
	a2	0.75 T	0.889 T	\pm 16.8 mrad
	a3	4.55 T/m	22.85 T/m	_

Magnetic field measurements of the correctors

	Corrector	Optics requirement	measurements at 60 A (on beam lines)	Allowable alignment at ± 60 A
QC2RE	a1	0.015 Tm	0.0310 Tm	± 2.25 mm
	b1	0.015 Tm	0.0353 Tm	± 2.71 mm
	a2	0.37 T	0.602 T	\pm 23.1 mrad
	a3	1.05 T/m	6.51 T/m	-
QC1-2RE	b3	18.2 T/m	55.5 T/m	-
QC1-2RP	b3	11.48 T/m	28.3 T/m	-

Hall probe field measurements along the beam lines

Required precision of the magnetic field in the SuperKEKB IR

- Field error for accelerator beam operation < 10 Gauss
 - Magnetic field mapping of the beam lines by 3-axis Hall probe
- Field error for particle analysis < 15 Gauss
 - Magnetic field measurements inside the Belle director with the field mapper of 3axial Hall probes and the fixed 3-axial Hall probes (by DESY group under the Belle II collaboration)

Measured magnetic field data are used for improving the <u>3D</u> <u>magnetic field calculation model</u> which produces the precise field map in the SuperKEKB IR.

Super Hall probe field measurements along the beam lines

Mapping the magnetic field along the beam lines

- The measurement system consisted of the commercial Hall probe and the scanning mover.
- The hall probe position was defined with the Belle end yokes.

Hall probe field measurements along the beam lines

From the field measurements, the transport current of ESL was changed from 404 A to 390 A. The currents of ESR1 and ESR2-3 are 450 A and 151 A.

SuperKEKB Review 2018

Hall probe field measurements along the beam lines

SuperKEKB IR magnetic field calculation model by OPERA-3D

• All SC magnets and magnetic components are included.

- Quenches of the quadrupole magnets from the superconducting cables at the bottom of the current leads
- Movement of the LHe vessels which have the SC magnets by the electro-magnetic forces from the Belle solenoid field at 1.5 T
- 3. Cold valve trouble of the He refrigerator for QCSR

- 1. Quenches of the magnets from the superconducting cables at the bottom of the current leads
 - Dec. 6th, 2016: QC1LE quench at 1752 A during up-ramping to 2000 A
 - Dec. 9th, 2016: QC2LP quench at 1240 A during up-ramping to 1250 A
 - Jun. 13th, 2017: QC1LE quench at 1090 A during up-ramping to 1577 A

All quenches happened at <u>the SC cable</u> between the magnet and current lead

Estimation of temperature at the end of current leads

Top surface of the QCSR service cryostat (30 pairs + 1 current leads)

Lead conditions at quench:

SC cables from magnet were connected to the bottom terminals of the current leads with solder

- Superconducting cable(NbTi)
 - Strand wire: O.D.=0.5mm (Cu ratio=1)
 - Strand number in cable=10
 - Performance of strand
 - 5T @ 4.22 K 307A
 - 6T @ 4.22 K 247A
- *NbTi*: J_c=5500 A/mm² at 0 т & 4 к
 - $T_{cs} = T_b + [T_c (B) T_b] [1 (I_{op}/I_c)]$
 - T_c (0) = 9.2 K, T_b = 4.2 K
 - *Т_{сs}=* 7.52 К
 - I_c=5500 A/mm², I_{op}=1848 A/mm² (corresponds to 1800 A of operating current)

Improvement :

Two SC cables are added to the bottom terminal by soldering

T_{cs}= 8.64 K by reducing the current density of the SC cables by one third

20 current leads of the main quadrupole magnets, ESL and ESR1 were improved by adding the additional SC cables to the bottom terminals from October to November, 2017.

Soldered two cables to the terminal

2. Movement of the LHe vessels which have the SC magnets by the electro-magnetic forces from the Belle solenoid field at 1.5 T

QCSL helium vessel

Current(A)

• The magnetic center was measured by the quadrupole field profile

Distance of the quadrupole center from IP, mm

	QC1LP	QC1LE	QC2LE	QC1RP	QC1RE
With excitation of solenoids	939.50	1416.10	2695.10	938.46	1413.28
Without excitation of solenoids	937.02	1414.36	2695.18	937.52	1412.41
Δ (with-without)	2.48	1.74	0.08*	0.94	0.87

* EMF on QC2LE is small.

Super

3. Cryogenic valve trouble of the He refrigerator for QCSR

Super

KEKB

The cryogenic valve, which connected to the final stage heat exchanger, did not close the helium gas line.

- By leaking the cold helium gas, the refrigerator lost the cooling power of 26.5 W at 4.4 K.
- The cryogenic valve was repaired in January 26th, 2018, the refrigerator recovers the cooling power as same as the QCSL refrigerator.

Cool-down of QCSR from room temperature to 4 K

The cool-down of QCSR was not completed in 70 hours in May 2017.

The cool-down of QCSR was completed in 55 hours in February 2018.

2018/03/15

Super

Summary

- The final focus system, QCS, has been completed and it is now ready to have beams.
- Data of the magnetic field measurements on the beam lines are still being studied.
 - Magnetic field profiles of the SC magnets will be included in the optics calculation.
 - Calibration of the Hall probe is now planed with research collaboration with FNAL to understand the solenoid field profiles along the beam lines.
 - With the field measurement data, the precise 3D field calculation model will be constructed for the Phase-3 operation.
- Concerning for the quadrupole magnet vibration, we started the development of the measurement system with BNL.

Back-up files

Major troubles of QCSR in company

QCSR magnet cryostat

1. ESR1 electrical insulation fault at 1st Nov. 2016.

- The electrical insulation fault was detected at the withstanding voltage test after assembling the ESR1 to the helium vessel.
 - » For the ESR1 quench test with the KEK vertical test stand , film heaters were attached on the surface of ESR1.
 - » After the quench tests, the heaters were removed from the solenoid surface. Some pin

SuperKEKB Review 2018

Identifying the fault place in ESR1

It took two weeks for detection:

Super

KEKB

- The fault was detected after welding the pipe to the helium vessel. Inspection was centrally performed on the cables assembled in the pipe.
- As the result, it turned out that the fault existed in the helium vessel, and then the helium vessel was cut along the welding line.
- The ESR1 solenoid was pulled out from the vessel, and the electrical tests were performed on the surfaces of ESR1. One fault was detected.

2018/03/15

Major troubles of QCSR in company

Repair of the ESR1 electrical insulation damage

Process for repair

- Additional electrical insulation on the ESR1 solenoid surface by Kapton tape
- Wrapping glass tape with impregnating epoxy resin on the Kapton tape
- Assembling Tungsten radiation shields around ESR1
- After setting the ESR1 with the shields in the helium vessel, the electrical tests were performed in the air. Test results were good.
- After welding the vessel, the electrical tests in helium gas were performed. Test results were good. [22nd Nov. 2016]

2. The second electrical insulation fault of ESR1

- 12th Jan. 2017 : The final electrical tests of QCSR cryostat in Mitsubishi
 - Detecting the electrical insulation damage in the ESR1 electrical line
 - » Electrical discharge happened at AC1000 V against the test voltage of AC1800V.
 - Another 29 magnets showed good electrical performances.
- Fault place: the cable to the cold diode for the quench protection of ESR1 in the service cryostat

Super

Cold diode for the ESR1 quench protection

• Stored energy of ESR1= ~800 kJ

Super

- When we apply the same protection system to QCSR1 as the ESL system, the temperature of the 10 coil sections reach over 300 K. ERS1 consists of 15 coil sections.
- For ESR1, 15 sections are divided into 6 groups. Each group is connected to the individual cold diode.
 - » Temperatures of all coil sections <150K
 - » The operation of the cold diode was confirmed in the cold test with the KEK vertical test stand.

Electrical tests after repair of the cold diode cable

- 17th Jan. 2017: After detecting the fault in the cable of the cold diode and repairing the electrical insulation of the cable, ESR1 passed the electrical tests in the air.
- 24th Jan. 2017: The electrical tests for the magnets in the cryostat were performed in air and in helium gas.
 - » All magnets showed good electrical performances.

Super

KEKB

• <u>31st Jan. 2017 : Success in the final electrical tests</u>

CCSR cryosta delivered to Feb. 2017.

Vibration measurement system

Vibration measurements at BNL (Dec. 18 – 19, 2017)

Vibration measurement system

