

Present Performance and Plans

Edit Size Window 19-07-01 08:58: Help -Luminosity [10³²/cm²/sec] 122.94

SuperKEKB Luminosity Display on skbcons-01.kekb.kek.jp

Y. Ohnishi

Peak luminosity at Phase 3 Spring Run 2019

Phase 3 Spring Run 2019

	July 1 08:58	July 1 1:48	July 1 1:26	June 20 19:10
β ∗ * (mm)	80	80	80	200 / 100
β y* (mm)	2	2	2	3
I LER / I HER (MA)	799.7 / 821.5	398 / 401	265 / 268	494.7 / 496.1
Nb	1576	789	395	1576
Ib LER / Ib HER (MA)	0.507 / 0.521	0.504 / 0.508	0.671 / 0.678	0.314 / 0.317
$\boldsymbol{\xi}$ y ler / $\boldsymbol{\xi}$ y her	0.0355 / 0.0197	0.0375 / 0.0213	0.0389 / 0.0220	0.0335 / 0.0189
Lsp x10 ³⁰	29.5	32.0	24.8	30.7
L x10 ³²	122.94	64.58	44.66	47.85

Machine Parameters

Definition of beam-beam parameter: $L = \frac{\gamma_{\pm}}{2er_e} \frac{\xi_{y\pm}I_{\pm}}{\beta_y^*}$ Definition of L_{sp}: $L_{sp} = \frac{L}{I_{b+}I_{b-}n_b} = \frac{1}{2\pi e^2 f_0 \phi_x \Sigma_z \Sigma_y^*}$

Key issues limiting the current performance

- Strategy to reach the design luminosity
 - β^* squeezing
 - \bigcirc beam-beam parameters \rightarrow detailed talk by Ohmi-san
 - stored beam currents
 - detector background \rightarrow Nakayama-san's talk, Iisda-san's talk for injection
 - QCS quench, fast beam abort \rightarrow Ohuchi-san's talk, Ikeda-san's talk

The beam-beam parameter can be kept even though we squeeze the beta at IP.

Specific Luminosity and Beam-Beam Parameter

Luminosity is improved by increasing ver. emittance in HER

Beam size is unstable. Flip-flop?

Flip-Flop Phenomena

change fill pattern from #789 to #1576

The flip-flop became mild after optics corrections on June 29th.

However, we always observed the oscillation(fast) of the ver. beam-size with X-ray monitor.

The emittance is one of the tuning parameters.

- ECL luminosity monitor provides moving average for 20 sec. The peak-to-peak is 5 % ~ 10 % fluctuation
- LumiBelle2 is a fast luminosity monitor.
- The luminosity spikes are not coincident with the injection.

Vertical orbit offset feedback (slow control) by using ver. beam-beam kick (canonical)

$\beta_u^* = 2 mm$

Emittance (non-collision) LER: 6.1 pm HER: 20 pm

Beam-Beam Blow-up

Ver. beam size measured by X-ray monitor.

HER Non-collision $\sigma_{u-}^{*} = 0.2 \ \mu m$

The blow-up in the LER is significantly larger than the HER.

The HER vertical beam size is adjusted by using HER emittance control knob (ver. dispersion) in order to equalize the beam size as much as possible.

Final design: ε_y

LER: 8.6 pm

HER: 13 pm

5.3 mm @ 700 mA (#1576)

Bunch Length [mm]

Measurement of Bunch Length

$$\sqrt{\sigma_{z-}^2 + \sigma_{z+}^2} \quad \Sigma_y^* = \sqrt{\sigma_{y-}^{*2} + \sigma_{y+}^{*2}}$$

Bunch length is important.

Bunch Length [mm]

5.9 mm @ 700 mA (#1576)

LER: $\varepsilon_y = 6.1 \text{ pm}$

			XL	umiPanel								XL	umiPanel			
🌇 <u>F</u> ile <u>E</u> dit	<u>W</u> indow					2019-07-04	09:22:58 <u>H</u> elp ▼		🌇 <u>F</u> ile <u>E</u> dit	t <u>W</u> indow					2019-07-04	09:23:
		Lum	inosity:	2565 x10 ³⁵	cm ⁻² s ⁻¹	2.5 >	(10 ³⁴				Lumi	nosity:	1071 x10 ³⁸	⁵ cm ⁻² s ⁻¹	1 x	10
	Value	Min.	Max.		Value	Min.	Max.			Value	Min.	Max.		Value	Min.	٦
ε _{xL} :	2.0000	1.8000	INF nm	ε _{xH} :	4.6000	2.0000	INF nm		ε _{xL} :	2.0000	1.8000	INF nm	ε _{xH} :	4.6000	2.0000	
β _{×L} :	80.0000	25.000	INF mm	β _{xH} :	80.0000	25.000	INF mm		β _{×L} :	80.0000	25.000	INF mm	β _{×H} :	80.0000	25.000	
ε _{yL} / ε _{xL} :	.3000	.2000	INF %	ε _{yH} / ε _{xH} :	.4300	.2000	INF %		ε _{yL} / ε _{xL} :	4.4000	.2000	INF %	ε _{yH} / ε _{xH} :	1.3000	.2000	
β _{yL} :	2.0000	.2500	INF mm	β _{yH} :	2.0000	.2500	INF mm		β _{yL} :	2.0000	.2500	INF mm	β _{yH} :	2.0000	.2500	
ξ _{xL} :	.0021	.0000	INF	ξ _{×H} :	.0015	.0000	INF		ξ _{xL} :	.0021	.0000	INF	ξ _{×H} :	.0015	.0000	
ξ _{yL} :	.0659	.0000	.09	ξ _{yH} :	.0758	.0000	.09		ξ _{yL} :	.0379	.0000	.09	ξ _{yH} :	.0198	.0000	
I _L :	.7000	А	~0.066	I _H :	.7000 /	^A ~0.	076		լ։	.7000	A ~(0.038	I _H :	.7000	[∧] ~0.	020
σ _{zL} :	5.3000	mm		σ _{zH} :	5.9000 I	mm	4	- Streak→	σ _{zL} :	5.3000	mm		σ _{zH} :	5.9000	mm	
EL:	4.0000	GeV		E _{H:}	7.0070	GeV			EL:	4.0000	GeV		E _{H:}	7.0070	GeV	
σ _x :	12.649 µm	σ _y :	109.545 nn	n σ _x :	19.183 µm	σ _y :	198.897 nm		σ _x :	12.649 µm	σ _y :	419.524 nm	1 σ _x :	19.183 µm	σ _y :	34
θ _{xh} :	41.5000	20.000	50 mrad	N _{b:}	1576.0000	1.0000	5000		θ _{xh} :	41.5000	20.000	50 mrad	N _{b:}	1576.0000	1.0000	50
	Working	File: ~/.lum/las	stoptimum	Calculate	Optir	nize				Working	File: ~/.lum/lasto	optimum	Calculate	e Opti	mize	
Main Applicatio	on Area								Main Applicati	on Area						

if there is no beam blow-up.... $\xi_y = 0.076$ for $I_b = 0.44$ mA is too large?

HER: $\varepsilon_y = 61 \text{ pm}$ HER: $\varepsilon_y = 20 \text{ pm} \quad \longleftarrow \text{ XRM} \quad \longrightarrow \quad \text{LER: } \varepsilon_y = 88 \text{ pm}$

Consistent with the observation.

Linear optical parameters :

- X-Y couplings at IP \rightarrow adiabatic luminosity scan: OK, r_2^* is corrected by the skew quad. coils at QC1s. Ver. dispersions at IP \rightarrow adiabatic luminosity scan: OK
- Ver. waist \rightarrow adiabatic luminosity scan: OK
- Orbit at IP (H-angle and V-angle) \rightarrow need more precise optimization (0.1 mrad step, see Ohmi-san's talk) Betatron tunes \rightarrow adiabatic luminosity and background scan, however need more survey (ref. D. Zhou-san)

Nonlinear optical parameters : \bigcirc

- Chromatic X-Y couplings at IP \rightarrow adiabatic luminosity scan in HER : OK for (R_3^*, R_4^*) , but not yet done in LER
- Chromatic Beta at IP \rightarrow adiabatic luminosity scan : no strong response
- Skew sextupole correctors at QCS \rightarrow adiabatic luminosity scan in HER: OK, but not yet done in LER Sextupole and octupole correctors at $QCS \rightarrow not$ yet done

Cap sigma measurements at low bunch currents with Beam-Beam scan

to check geometrical luminosity, vertical crossing-angle, off-momentum behavior, and cap bunch length

We made the vertical orbit bump to make the ver. angle at IP in LER.

L_{sp} is bad for 2 mrad

Vertical Angle at IP in LER

Luminosity is increases by 20 % with $\Delta p_y^* = 1, 0.5 mrad$

Beam background is also reduced.

We used one-cycle injection (Kaji-san); June 25, 2019 the injection is one time for each bucket. In case of 789 bunches, it takes about 2 min for 6.25 Hz rep. to fill all buckets. The bunch current is adjusted by linac beam with RF-gun and FC STB to make a small bunch current. Beam profile is measured by LumiBelle2 (fast luminosity monitor) with ver. bump height or RF room phase scan.

The bunch current is less than 0.04 mA/bunch

Cap Sigma Measurements with Beam-Beam Scan

Y. Funakoshi, Y. Ohnishi, A. Morita, H. Koiso

0.234 μm

0.378 μm

Σ_y^* measured by ver. offset scan

consistent with each other 13

0.38 µm

Cap Sigma Measurements with Beam-Beam Scan (cont'd)

Bunch length measurement

Σ_z measured by RF phase scan

p4 = 4.52358 + / - .70640

Σz (BB scan)	Σz (Streak)	σz+ (Streak)	
6.61 mm	6.58 mm	4.25 mm	

 σ_{z-} (Streak)

5.02 mm

In order to check vertical beam size/offset difference along z-coordinate Σ_y* measured by ver. offset scan at RF phase of $\Delta \phi = -5$ deg., 0 deg., +5 deg.

deviation between RF phase offset is small

Vertical offset scan with frequency shift (-400 Hz, -200 Hz, 0 Hz, +200 Hz, +400 Hz)

Vertical dispersion at IP

ChiSquare = 85.7672 Goodness = 2.4E-19 p0 = 8.05791 + / - .00687p1 = -25.836 + / - 1.95449p2 = -5422.2 + / - .00588

$$\sigma_{\delta+} = 7.53 \times 10^{-4} \qquad \Delta \Sigma_y^* = \eta_y^* \sigma_{\delta} = 0.026 \ \mu m < 0.1 \times \Sigma_y^* \qquad \text{The chromatic X-Y coupling at IP is not so larg}$$

$$\sigma_{\delta-} = 6.30 \times 10^{-4} \qquad \text{The dispersion at IP is well corrected.} \qquad \Delta \Sigma_y^* (\sigma_{\delta}, r_1' = 12 \ rad) = 0.1 \times \Sigma_y^* \qquad \Delta \Sigma_y^* (\sigma_{\delta}, r_2' = 3 \ m) = 0.58 \times 10^{-4} \times 10^$$

Cap Sigma Measurements with Beam-Beam Scan (cont'd)

The chromatic X-Y counling at IP is not so large.

15

Max. Beam currents: LER ~ 800 mA and HER ~ 850 mA

Beam Current

LER lifetime ~ 20 min / HER lifetime ~50 min

The lifetime restricts the max. beam currents.

The injector capability limits the max. beam current in LER. 2-bunch injection and/or ~25 Hz rep. are necessary to increase larger beam current.

L.Lanceri – INFN & Univ.Trieste for the VXD monitoring group / SuperKEKB meeting 14/03/2019

28 diamond sensors

4 dedicated to beam abort requests, similar to Phase 2

QCS Diamond Sensors as Beam Background Monitor

Belle II - VXD Beam Abort: tests

VXD Radiation Monitor **Top View** 0.10 0.09 0.08 0.1 Max: 0.03 0.02 0.01 0.00 **Cross Section** FW SVD Cone FW Bellows FW IP BP 0.09 0.20 BW 0.00 0.00 0.42 0.00 0.00 0.02 0.01 0.00 0.00 0.01 0.05 Unit: mRad/S LER

- 20 dedicated to monitoring (initially!)
- 4 not read out yet (SVD BW, off-horizontal plane)

Beam Background

QCS Diamond Sensor

In order to tune on CDC HV, sum of BW and FW should be less than 12 mRad/s.

Tanaka's rule

HER injection background depends on the horizontal tune.

LER injection background also depends on the horizontal tune.

Storage background becomes very high as increasing the LER beam current.

LER + HER < 12 mRad/s requires LER < 700 mA for $\beta_y^* = 8$ mm and LER < 400 mA for $\beta_y^* = 2$ mm. $L_p = 6x10^{33}$ This rule comes from our experience $L_p = 2.5 \times 10^{33}$ to turn on the CDC HV. so-called "Tanaka's rule"

Beam Background in LER and HER

Beam Background due to Residual Beam Gas in LER

Loss Rate:
$$\frac{N}{\tau} = Ncn_g \frac{4\pi r_e^2 Z^2}{\gamma} \left\langle \frac{1}{\theta_c^2} \right\rangle$$

Loss rate becomes larger as increasing of the beta product at QC1 and other places in the ring.

When we squeeze the beta*, the loss rate increases as the result of the beta product increases even though the same beam current.

$$L \propto rac{I \xi_y}{eta_y^*} \qquad \quad \xi_y \propto \sqrt{rac{eta_y^*}{arepsilon_y}}$$

In order to achieve 10^{34} , ILER = 340 ~ 470 mA at β_y^* = 1 mm

VXD BW+FW < 12 mRad/s ?

β y*	2	8	mm
₿y,QC1	370.6	95.8	m
β y,D2V1	17.0	27.3	m
dqcı	13	3.5	mm
dD2V1 (calc)	2.1	2.7	mm
dd2v1 (top)	2.3	4.5	mm
dd2v1 (btm)	-2.0	-4.5	mm
LER (VXD BW+FW < 12)	400	700	mA
L (VXD BW+FW < 12)	6 x 10 ³³	2.5 x 10 ³³	cm-2s-1

L seems to be scaled by $1/\beta_y^*$ here.

Assumption: the beam-beam parameter can be kept when the beta squeezing is performed,

Long-term Plan

- The beta at IP can be squeezed down to 2 mm in the vertical and 80 mm in the horizontal direction.
- The specific luminosity is improved as decreasing the beta at IP.
- The vertical beam-beam parameter can be kept to be ~0.02 at 0.67 mA bunch current even though \bigcirc the beta squeezing is performed. The target is ~0.04 to accomplish 0.08 for 1.4 mA bunch current.
- The peak luminosity is $1.23 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$ at 800 mA / 820 mA (LER/HER).
- Beam-Beam blow-up is observed, and also flip-flop phenomena. The vertical emittance without collision is enough small when Σ_v^* measurement and X-ray monitor are compared.
- In order to find machine error to degrade luminosity performance, we measure Σ_y^* and Σ_z by \bigcirc using beam-beam scan at small bunch currents. No big error is not found so far.
- Linear optical parameters are almost optimized. X-Y coupling, dispersions at IP, waist, ...
- It is necessary to check nonlinear optical parameters, some of them are checked.

Improvement of Specific Luminosity

Nonlinear aberrations

Nonlinear Aberrations and Chromatic X-Y Couplings

Chromatic X-Y couplings

and enough small. ($r_{3}' = 300 \text{ m}^{-1} r_{4}' = 20$) r_1 ' and r_2 ' are difficult to measure by TbT.

$$\Delta \sigma_y^{*2} = \sqrt{\varepsilon_x \left(\frac{r_2^{*2}}{\beta_x^*} + \beta_x^* r_1^{*2}\right)}$$

25

 $10 \text{ T/m} \rightarrow \text{K2} = 0.4 \text{ m}^{-2}$

Skew Sextupole at QCS

$2.5 \text{ T/m} \rightarrow \text{K2} = 0.1 \text{ m}^{-2}$

$$H = \frac{e}{p}A_s = \frac{K_2}{6}(y^3 - 3x^2y)$$
$$A_s = \frac{g_2}{6}(y^3 - 3x^2y) \qquad g_2 = (B\rho)K_2$$
$$\vec{x} = M\vec{x^*}$$

IP -> QC1RE

{ {	1.079588,	-1.501248,	-0.000489,	0.000
{	-0.615786,	1.782576,	0.001152,	-0.000
{	-0.000980,	0.000937,	0.921587,	-1.320
{	0.000412,	-0.000346,	0.574725,	0.261

IP -> QC2RE

{ {	2.822264,	-5.352622,	-0.003650,	-0.001
{	-0.500603,	1.303750,	0.004173,	-0.001
{	-0.009919,	0.018274,	-0.616102,	-0.718
{	0.002742,	-0.006273,	1.173520,	-0.254

Hamiltonian of Skew Sextupole

IP -> QC2RP

{ {	2.734260,	-3.480206,	0.022371,	-0.018732},
{	-0.787774,	1.368435,	-0.013255,	0.009202},
{	0.015129,	-0.011311,	-0.568849,	-0.494743},
{	-0.013307,	0.007144,	1.730980,	-0.252531}}

K2 = 1

	coefficient	coefficient
	QC1RE	
P y ^{*3}	-0.384096	
p _x *2 p _y *	1.488466	
x*2 py*	0.76975	
	QC2RE	QC2RP
P y ^{*3}	-0.061881	-0.020183
p _x *2 p _y *	10.296074	2.996124
x*2 py*	2.862423	1.849394

Dynamic aperture will be reduced by skew sextupole elements.

0202}, 0382}, 0881}, 1349}}

1791}, 1274}, 8735}, 4078}}

Cap Sigma Measurement

Tune Scan

29

> LER v_x scan with $v_y = 46.606$

• No resonance around $2v_x + 3v_s = N$.

> LER v_y scan with $v_x = 44.53$

- No resonance around v_y = 44.586 ?! Unbelievable...
- Need optics correction around (.53,.58)?

Tune Scan

> HER v_y scan with $v_x = 45.536$

• Note that HER beam current was not constant, so it's hard to draw conclusion from beam

\blacktriangleright HER v_x scan with v_y = 43.605

• Plausible resonance around $v_x = 45.537$. How to explain it?

Tune Scan

\blacktriangleright HER v_x scan with v_y = 43.595 • Resonance around v_x = 45.537 is not clear now. • Flip-flop phenomenon?! B.G.**大幅増、ビームが太り**Lumi.大幅減 ここにも共鳴線がある (図示してあると安心) HER 43.64 Lumi.は高いが入射 ^{B.G.} large 43.62 12^h0^m0 6/23/2019 0^h0^m 43.6 0.5 م^{43.58} 43.56 Lumi.は若干低いが 入射B.G.が小さい [mr] [^] 43.54 43.52 43.5 45.52 45.54 45.56 45.58 45.6 45.62 45.64 ν_x 45.535 45.540 45.545 45.550 45.555 45.560 45.530 Ref. K. Shibata, KCG shift report 15 v_x [e–]

 \blacktriangleright LER v_x scan with v_y = 46.606

31

Linear Optics

9-06-15 22-3	1.22	Heln	-
f data taking			
re data taking	(sec)		5
points at eac	h step	4	p
ta Taking —			<u> </u>
t Tim e			
osity			
_			
2		4	~
urona data—			V
lete newest d	ata		
can-	utu		_
Scan Start			
			_
ffset			
nale			
ffset			
ne			
ne.			
ne			
ne			
			-
io 💿 Sp	ecific	Lum.	
Resume			
d.			
le			_
Read File			
			_
Fit Data			
Csl		016	9
Csl		.114	.9
ZDLM		.037	7
ZDLM		.132	29
Belle2		.061	1
Belle2		.000	00
Size		084	.4
Size		.060)1
Size		2.441	4
Size	63	9.795	50
Life		.018	32
Life		.954	2
Life		053	33
Life		.458	0
			-

Beta y*

Chromatic beta y* ?

L*: Kinematic term? Nonlinear Maxwellian fringe?

Squeezing/enlarge Beta_y*?

Piwinski Angle

 $\sigma_{x,nano}^* = \sqrt{\sigma_x^{*2} + (\sigma_z \phi_x)^2} \simeq \sigma_z \phi_x \qquad \Phi = \frac{\sigma_{x,nano}^*}{\sigma_x^*} \simeq \frac{\sigma_z}{\sigma_x^*} \phi_x$ **Coherent beam-beam instability** Squeezing Beta_x*? Φ ~ 15 in Phase 3(80 mm)

Hourglass effect

Crab-waist?

Squeezing Beta_x*?

Large emittance ?

$$H \propto \left(1 - \frac{2}{3}k_1L^{*2}\right) \frac{L^*}{\beta_y^{*2}} J_y^2$$

L* ~ 0.76 m / 1.2 m (LER/HER)

