

Injector beam operation

Injector beam operation

Masanori Satoh for injector linac group

KEKB Accelerator Review Committee, July 8-10, 2019

Contents

- 1. Overview
- 2. Beam operation status
- 3. Recent progress
- 4. Summary
- 5. Future plan

Injector related subjects

- 1. Injector RF and LLRF (T. Miura)
- 2. Injector beam monitors (F. Miyahara)
- 3. RF gun (R. Zhang)
- 4. Positron source (Y. Enomoto)
- 5. Status of beam transport lines (T. Mori)
- 6. Emittance preservation (Y. Seimiya)
- 7. Control system (H. Kaji)

Injector linac overview

- Injector linac
 - e-/e+ injector for 4 independent storage rings, and e+ DR
 - 50 Hz, up to 2 bunches (96 ns interval)
 - Simultaneous top up injection to all rings
- SuperKEKB:
 - HER: e-, 7 GeV, 1 nC
 - LER: e+, 4 GeV, 1 nC
 (DR: 1.1 GeV)
- Light sources:
 - PF: e-, 2.5 GeV, 0.3 nC
 - PF-AR: e-, 6.5/5 GeV, 0.3 nC

Parameters (KEKB/sKEKB)

	KEKB (f	inal)	SuperKEKB (Phase-I)		SuperKEKB (Phase-III final)		
Beam	e+	e–	e+	e–	e+	e–	
Energy (GeV)	3.5	8.0	4.0	7.0	4.0	7.0	
Stored current (A)	1.6	1.1	1	1	3.6	2.6	
Beam lifetime (min.)	150	200	100	100	6	6	
Bunch charge (nC)	Primary e-10 → 1	1	Primary e- 8 $\rightarrow 0.4$	1	Primary e-10 → <u>4</u>	<u>4</u>	
<u>Normalized</u> <u>emittance (</u> mm·mrad)	1400	310	1000/1200	200/130	<u>100/15</u> (Hor./Ver.)	<u>40/20</u> (Hor./Ver.)	
Energy spread (%)	0.125	0.125	0.5	0.5	<u>0.16</u>	<u>0.07</u>	
# of bunch	of bunch 2 2		2 2		2	2	
Beam rep. (Hz)	50		25		50		
Simultaneous top up	3 rings (KEKB e–/€	s e+, PF)	n/a		<u>4+1 rings</u> (SuperKEKB e–/e+, DR, PF, PF-AR)		

Pulse to pulse switching: rf e- gun/thermionic e- gun

<u>Thermionic DC e- gun</u> (GU_AT) • e+ production e-: 10 nC (for LER injection) • e- study/HER injection: 1 nC • PF injection: 0.3 nC • PF-AR injection: 0.3 nC

Pulsed bends for simultaneous top up (since 2018 summer)

High bunch charge e- from rf gun

Injector beam operation

Pulse to pulse e-/e+ beam switching

- Pulsed steering magnet control e- beam orbit.
- Low emittance e- beam goes through a hole at center of beam line.

Injector beam operation

Super

Pulse to pulse beam switching for simultaneous top up

- Maximum repetition of e- beam w/ thermionic gun is limited up to 25 Hz.
 - Heating issue of pulsed bend coil and chamber
 - New bend and vacuum chamber will be installed in summer 2020.

Simultaneous beam operation w/ thermionic e- gun and rf e- gun

Stored current stability during simultaneous top up

PF-AR 5 GeV injection (1)

- PF-AR 5 GeV operation to save operation cost
- Common DC bend for PF/PF-AR beam transport line
- Frequent parameter switching for quasi top up for both of PF and PF-AR

AR 5GeV

SendOpelog start

Set Beam Rep OHz

Wait Set BM_61_F1 Set BP_58_1

₩ Wait Set Beam Rep 0Hz
Set BM_61_F1

2019/03/05 20:48:43 v0.1

Stop

0.0 Start

Parameter Switch AR 5GeV

Parameter Switch AR 5GeV

countdown:

File conf

Interval

PF 2.5GeV

SendOpelog start

✓ Set Beam Rep 0Hz

Set BM_61_F1
Wait Set BM_61_F1

Set BP_58_1

Wait Set Beam Rep OHz

[sec]

Auto

PF-AR 5 GeV injection (2)

• Typical operation mode

- PF injection: 3 min.
- Parameter switching: 10 s
- PF-AR injection: 30 s

Monitors (1)

- Beam position monitor (x 103)
 - Four strip line electrodes (x 97)
 - Measurement precision $\sim 10 \ \mu m$
 - Eight strip line electrodes (x 6) (J-ARC, LTR x2, PF BT, HER BT, LER BT)
- Profile monitor (x 104)
 - Al2O3/CrO3 (AF995R, Demarquest Co.). (t: 1 mm, 0.1 mm), YAG:Ce (t: 0.1 mm)
- Wire scanner (WS) (x 6)
 - SectorA, B, C, 2, 3, 5
- Streak camera (ST) (x 3)
 - SectorA, C, 3

Monitors (2)

- RF (amplitude, phase) monitor (x 61)
 - Klystron output, SLED output, accelerating structure output (beam induced field), reference signal
 - average, peak, rms values

Synchronized data acquisition

• Shot by shot information of all BPM, RF monitor, Pulsed magnet data are available.

Event generator

- Waveform type data including beam shot ID
 - Beam shot ID is delivered from event generator to event receiver via data buffer.
- All data are archived in storage system up to 50 Hz.
- Client software can get the data as waveform type EPICS PV.

Pulsed magnet system

- Pulsed quads (x 28) (w/ ceramic duct) and steering (x 36) were installed at Sector3 to Sector5 in 2017 (on movable girder).
- Pulsed bend, additional quad and steering were installed in 2018 summer and winter shutdown.
- PXIe based control system (Windows 8.1, LabVIEW, EPICS) have worked fine w/o any serious trouble.
- Power supply stability: 0.01% (24 hours)

– SuperKEKB – SuperKEKB

- e- (HER injection beam): J-ARC, BT
- e+ (LER injection beam): J-ARC, LTR, ECS, BT
- PF and PF-AR
 - J-ARC, BT

Energy feedback loops (2)

- Energy feedback core ullet
 - work as EPICS IOC for PID control
- Control GUI ullet
 - Set/Read feedback parameter, monitor location, actuator device (klystron)

Conf

monitor PV

0.1

0.13575024

target value

0.0

5.0

ON

Save

Close

Energy stability at BT line ullet- < 0.025%

File En			ergy Feedback			2019/06/19 19:12:07			v0.2
КВ	E	KBE-GRA1	КВР	QFE	ARE				
	Name		Conf & Graph		Status	ON/OFF			
	KEKB e+ Jarc		Conf & Graph		Run	ON	ON	OFF	Í
	KEKB e+ SY2		Conf & Graph		Run	ON	ON	OFF	
	KEKB e+ SY3		Conf & Graph		Run	ON	ON	OFF	
KEKB e+ BT		Conf & Graph		Run	ON	ON	OFF		

0.009

0.008

0.007

0.006

0.005

0.004

0.003

Beam orbit feedback

- Orbit feedback tool is ready.
- It can be deployed in any point.
 - J-ARC, end of linac, ...
- Large orbit drift (~ 1 mm) can be corrected within ~ 0.1 mm w/ feedback.

Dispersion measurement and correction

24

- Horizontal dispersion leakage from J-ARC causes the beam position jitter.
- Applying fudge factors to quads in J-ARC, dispersion is well corrected.

Y. Seimiya

Emittance measurement (~1 nC) w/ multiple wire scanners

Recommendations of the 22nd Review

R24.1: Measure the energy spread and energy jitter at the end of the linac and demonstrate that the required goals are met.

•Energy jitter @ BT < ~ 0.025%

Energy spread: High precision profile monitor will be installed at BT

R24.2: Develop with priority automatic correction algorithms for critical procedures like the dispersion correction.

Dispersion measurement and correction software is ready.
Orbit and energy feedback tools are also working.

R24.3: Define a backup strategy for Phase III in case that the primary RF gun cannot be used, e.g. by preparing a scenario of using the second RF gun.

• In the future, second rf gun will work as backup.

• Thermionic gun is a backup for a while.

Summary

- Achievement of stable simultaneous top up injection to HER, LER, PF, and PF-AR w/ thermionic gun, rf gun, pulsed magnets
- HER injection has been done w/ rf gun from PhaseIII day 1 to run end w/o any significant problem.
- Establish of PF (2.5 GeV)/PF-AR (5 GeV) injection scheme (quasi top up)
- Quick recover from fire incident (one night rf conditioning, two days beam tuning)
- Energy feedback, orbit feedback loops, and other operation tools

Future plan

- Increase e+ bunch charge (Y. Enomoto)
 - New flux concentrator in 2020
- RF gun improvement (R. Zhang)
 - Temperature stability in laser hat, laser profile monitor during top up in 2019
 - Better vacuum and higher rf power, higher Q_E photocathode in 2020
- Pulsed bend (heating issue)
 - New bend will be installed in summer shutdown 2020.
- Low emittance preservation w/ high bunch charge (Y. Seimiya)
 - Alignment, movable girder of acc. structure (x7) will be tested w/ beam soon.
 - Precise orbit control, wake field free steering
- Synchronized data acquisition and analysis
 - All data (BPM, rf, pulsed magnet) are already archived.
 - Integrated data analysis tool is under development.

