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SuperKEKB Review in 2018

R8.1: Perform several further analyses to identify the sources of beam jitter as
detailed in the following recommendations.

« R8.2: The analysis should include the calculation and study of the Bmag term,
which characterizes mismatch in the optics functions. Expand the formulae to
include this term.

« R8.3: Calculate the normalized position jitter amplitude to remove the effect of t
he beam optics.

« R8.4: Compare the normalized jitter amplitude and its evolution to the beam loss
locations and an aperture model.

- R8.5: Determine the frequency contents of the beam position jitter. In case that
dominant frequencies in the position jitter are found correlate them to possible
technical sources.

« R8.6: Perform a quantitative anal¥sis of energy jitter, dispersion and observed be
am position jitter to see what part of the position jitter can be explained by
energy jitter and what fraction remains unexplained.

« R8.7: Perform a careful and rigorous study on the timing jitter of the RF trigger
and the gun trigger, which might explain the observed energy jitter.

« R8.8: In case that further wakefield studies are performed, investigate the
position-dependent direct wakefield kick in linear order, which should be N
mgasurable for strong wakefields, as they are required for creating beam position
jitter.

Wefpartly answer about green items in my slide. Purple items have not been
preformed yet. We will investigate purple items as soon as possible.
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1. Requirement for SuperKEKB

« For the e-/e+, initial emittance is at RF
gun/extraction line of DR.

« We have to realize the high quality beam
transportation to main ring without
emittance growth as far as possible.

« Otherwise, injection rate is worse and
luminosity can not reach the target value.
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2. Sources of Emittance Growth
Candidates of emittance growth in LINAC or BT.

A) Residual Dispersion
— Through the residual dispersion, the energy spread converts to the beam size.

B) Beam Phase Space Jitter

— The emittance that includes beam phase space jitter, called as effective
emittance, must be satisfy the SuperKEKB requirement.

C) Wakefield in Acceleration Structure
— Wakefield, generated by a head of bunch, kicks its own tail.

— Thus if the beam is off-centered in the structure, the transverse wakefield
increases beam emittance.

D) Acceleration of Beam with Dispersion

— If a beam, which has dispersion, is accelerated by acceleration cavity with off-
phase, the energy deviation converts to betatron oscillations and causes
emittance growth.

E) Radiation Excitation

— Radiation excitation effect on emittance is proportional to both Lorenz gamma
to the fifth power and inverse of curvature radius to the third power.

— Especially, electron beam (7 GeV) is strongly affected by the radiation excitation
effect.



A) Residual Dispersion

A) Residual Dispersion in LINAC

« Large residual dispersion had been observed at the J-ARC before
dispersion correction.

« By tuning the strength of quadrupole magnets, residual dispersion
became small.
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A) Residual Dispersion

A) Other sources of Residual Dispersion

« Both orbit and angle of a beam which pass through bending magnets.
* Orbit displacement at quadrupole magnets that have a large strength creates a
sizable dispersion.

« Orbit of a beam which pass through sextupole magnets.
To keep residual dispersion minimized, orbit feedback is necessary.

Dependence between orbit+angle and dispersion / Effect of sextupole magnets \

« There are 6 sextupole in J-ARC.

« Orbit displacement cause
quadratic force.
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A) Residual Dispersion

A) Orbit Feedback

« An example of orbit FB (Shown BPM place in the LINAC end)
« Orbit FB at the end of LINAC was operated correctly.
« Orbit FB of J-ARC upstream will be performed next run.
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A) Residual Dispersion

A) Magnet use

B File Edit Browser Channel Axis Window

in the orbit FB at the end of BT
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A) Residual Dispersion

A) Residual Dispersion at BT line

We had corrected dispersion of each BT ARC one by one.

After that dispersion of the BT overall was measured changing the
beam energy.

Non-negligible residual dispersion was still observed.

We will minimize An and An’ at the end of BT in the autumn run.

Straight line  Straight line Straightline  straight line
(WS@BT1) (WS@BT2) (WS@BT) (WS@BT2)
- +
Brfore- "~ "7, Bt-f.o,r.?,.,,/,,.,..,
: - t
3 o T T L
“ 5 o i st
Elﬁ_ 52_ #I f l - L, *_
: i | | |
o -i:_i —t— T —t—— ] I —]
= 0. C 0'5; TT f
& & S .y M N
= = P T g’
% -0. % 030 | f
Q_Q_ Q 1;_ J: L]
6 Teo 0 300 469
ot

Ods
OdSs

WT_3amOds
WZ_34MOdS
Wz_3amdds

&-35aY
WSasfaY
%fﬂ#
3%
%



2. Sources of Emittance Growth
Candidates of emittance growth in LINAC or BT.

A) Residual Dispersion
— Through the residual dispersion, the energy spread converts to the beam size.

B) Beam Phase Space Jitter

— The emittance that includes beam phase space jitter, called as effective
emittance, must be satisfy the SuperKEKB requirement.

C) Wakefield in Acceleration Structure
— Wakefield, generated by a head of bunch, kicks its own tail.

— Thus if the beam is off-centered in the structure, the transverse wakefield
increases beam emittance.

D) Acceleration of Beam with Dispersion

— If a beam, which has dispersion, is accelerated by acceleration cavity with off-
phase, the energy deviation converts to betatron oscillations and causes
emittance growth.

E) Radiation Excitation

— Radiation excitation effect on emittance is proportional to both Lorenz gamma
to the fifth power and inverse of curvature radius to the third power.

— Especially, electron beam (7 GeV) is strongly affected by the radiation excitation
effect.



Eéeam Phase Space Jitter

Beam Phase Space Jitter

« In 2018, large orbit jitter was measured (1000 shots).
« Emittance estimated from beam jitter, called jitter emittance, was

not negligible.
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B) Beam Phase Space lJitter

B) Wakefield effect and Beam Phase Space Jitter

« Electron beam straightly pass through the positron generation
target hole, whose diameter is 2 mm.
« We suspected wakefield effect as a orbit jitter source.
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B) Beam Phase Space lJitter

B) Dispersion and Beam Phase Space Jitter

« We focus on dispersion which convert to orbit jitter through energy jitter.
- By dispersion correction, jitter emittance become less than 1 um.
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B) Beam Phase Space lJitter

B) B Function and Orbit Jitter

near target is derived.

residual dispersion and 3 function.
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Results of Measurement

Remain orbit jitter can be explained by B function.
Using Twiss parameters measured by WS at C sector, 3 function

B function is highly correlated with orbit jitter.
We conclude that large orbit jitter sources

are mainly both
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B) Beam Phase Space lJitter

B) Other Sources of Beam Phase Space Jitter

« By further investigation, we found that following items were sometimes sources of
jitter. Pulse magnet and RF phase jitter was almost resolved by person in charge.
« To identify the jitter source, monitoring beam jitter is important.

Binarization of Pulse Magnet
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B) Beam Phase Space lJitter

B) Beam Phase Space Jitter at BT line

In the RTL and BT, orbit jitter is much larger than that in LINAC, partly because BPM resolution is poor.

« Orbit jitter of first straight line in BT is about ~150 um@1 ¢. This value is probably BPM resolution.

« Assumed that calculated jitter emittance at the first straight line came from BPM resolution, jitter emittance at
second straight line is estimated as following:

- e- beam: yBejx/vPejy @BT end ~ 40/50 um
- e+ beam: yBejx/yPey @BT end ~ 30/30 um
« High resolution BPM is strongly desirable at BT. An upgrade of some BPMs for higher resolution is
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2. Sources of Emittance Growth
Candidates of emittance growth in LINAC or BT.

A) Residual Dispersion
— Through the residual dispersion, the energy spread converts to the beam size.

B) Beam Phase Space Jitter

— The emittance that includes beam phase space jitter, called as effective
emittance, must be satisfy the SuperKEKB requirement.

C) Wakefield in Acceleration Structure
— Wakefield, generated by a head of bunch, kicks its own tail.

— Thus if the beam is off-centered in the structure, the transverse wakefield
increases beam emittance.

D) Acceleration of Beam with Dispersion

— If a beam, which has dispersion, is accelerated by acceleration cavity with off-
phase, the energy deviation converts to betatron oscillations and causes
emittance growth.

E) Radiation Excitation

— Radiation excitation effect on emittance is proportional to both Lorenz gamma
to the fifth power and inverse of curvature radius to the third power.

— Especially, electron beam (7 GeV) is strongly affected by the radiation excitation
effect.



C) Wakefield in Acceleration Structure

C) Wakefield in Acceleration Structure

« Using a steering magnet, we searched an orbit so as to
minimize emittance.

« Emittance highly depends on beam charge and orbit.

« Wake free steering will be performed using RF gun in the next
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L. 1] e r ]
g 70 - :2150:— ~]
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Function = (c+(a (x~2))+(b X))x[mm]@SPA23 Function = (c+(a (x"2))+(b x))x [mm] @SPA23
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2. Sources of Emittance Growth
Candidates of emittance growth in LINAC or BT.

A) Residual Dispersion
— Through the residual dispersion, the energy spread converts to the beam size.

B) Beam Phase Space Jitter

— The emittance that includes beam phase space jitter, called as effective
emittance, must be satisfy the SuperKEKB requirement.

C) Wakefield in Acceleration Structure
— Wakefield, generated by a head of bunch, kicks its own tail.

— Thus if the beam is off-centered in the structure, the transverse wakefield
increases beam emittance.

D) Acceleration of Beam with Dispersion

— If a beam, which has dispersion, is accelerated by acceleration cavity with off-
phase, the energy deviation converts to betatron oscillations and causes
emittance growth.

E) Radiation Excitation

— Radiation excitation effect on emittance is proportional to both Lorenz gamma
to the fifth power and inverse of curvature radius to the third power.

— Especially, electron beam (7 GeV) is strongly affected by the radiation excitation

effect.

20



D) Accelerationof Beam witg Dispersion

D) Acceleration of Beam with Dispersion

- |f a beam, which has dispersion, is accelerated by RF cavity, no converts to
betatron oscillations and causes emittance growth.
« From measured dispersion, the dispersion is leak to RF cavity in ECS of SY3

Low emittance RF gun

(4nC, for e”) S0Hz Pulse-to-pulse modulation
H 1 Non-zero dispersion

M' KIkUChI Orbit: x at cavity -gg:v B (TonC for ob) _ FS,

\\ 3 4 5 :gzve.

. . . R e+ Target with F(.i&LAS . . v,

Dispersion: Measured dispersion from ECS in SY3.

There is dispersion at ECS cavity though design
s ) dispersion is zerg/at the point,
z : OF AR ME R
N“ GOt e e
o | |TW Y
. . : o 2 [ E
If the cavity has non-zero dispersion, a beam, gaining its -3 Y 1 T
energy depending on z, has net growth in the projected- 1.5¢ | ' | s
emittance. 5 1 E
This is an analogue of the synchro-beta excitation at the E 0.5 E
cavity with non-zero dispersion in the ring. 5 O =1 === E
W .o.5¢ ] =
_2 2 ’2 / 2 2 1F =
€ =€y +e€ + 2amn’ + U S N 1 1 .
0 0 (577 e ) < > 0 50 100 150 200

eV Wrf
U=—0V2 p= — I‘fﬂ'
EO C
0O omouonnunn uununuuumwuwn O u O O u u n
6 8 g gg POODD DOODUOVODOUOVOUTOVD U U T U U U 0
Simulati It: ~ 9 g B EEE0000000000000 0 04 999 ®
Imuiation result. Suns geriodeas] § § 8 3 9 3 2
6 |-U|-U|-qv IUI-U'UIU-Ul-Ul-UI-Ul'm | | | | | | I‘U 21
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D) Accelerationof Beam witg Dispersion

The bending magnets in ECS/SY3 have
D) Quadrupole component of bending magnet

« BL measurement data shows that non-negligible quadrupole
component of bending magnet exists.

« Assumed measured quadrupole component, simulation satisfy
measured dispersion well.

« We will move the each bending magnet about 10 mm in this summer.

« If the qudrupole component still remained in autumn operation, we
are also planning to installing a quad in the center of the chicane.

T. Mori BLX) This can explaine the measured dispersion leak.
fzm_ ~ Slopeiis quadrupole;zm/ponent.
B pgr0] N\ B/ B 0,67 %1072 -8t 20-mm -

B — Bs 612 | BS613 Bs615 | BS616
2.974 j j
: :

SC 612

2972 SC 613 SC614]
: @-—C}D—-{}-\ Lit
2.97
- . Bl
2.968 l l
- : H ' z 5 ~
2 966 1 1 1 1 | 1 L 1 L E L 1 1 1 ; 1 1 1 1 I 1 1 1 L I L 1 L 1 10 m m
98035 —20 ~10 0 10 20 30

X [mm]

BL of bending magnet along to beam orbit 22



2. Sources of Emittance Growth
Candidates of emittance growth in LINAC or BT.

A) Residual Dispersion
— Through the residual dispersion, the energy spread converts to the beam size.

B) Beam Phase Space Jitter

— The emittance that includes beam phase space jitter, called as effective
emittance, must be satisfy the SuperKEKB requirement.

C) Wakefield in Acceleration Structure
— Wakefield, generated by a head of bunch, kicks its own tail.

— Thus if the beam is off-centered in the structure, the transverse wakefield
increases beam emittance.

D) Acceleration of Beam with Dispersion

— If a beam, which has dispersion, is accelerated by acceleration cavity with off-
phase, the energy deviation converts to betatron oscillations and causes
emittance growth.

E) Radiation Excitation

— Radiation excitation effect on emittance is proportional to both Lorenz gamma
to the fifth power and inverse of curvature radius to the third power.

— Especially, electron beam (7 GeV) is strongly affected by the radiation excitation
effect.




E) Radiation Excitation

E) Emittance growth induced by radlatlon exc:|tat|on in BT

Theoretical emittance growth induced by radiation 2\ \&x\@q‘
excitation: I <L SQQ&%\‘
Ae:485\5[hre 5/£ds o 5, 1/p? ] &AL KR, /BT2
3 mc = 4O ‘ A \
N0 . ' BT2 /
Particle tracking simulation was performed from the end —ih_ 7 v b 7 ;
of LINAC to the end of BT. =3 / MY
SeCtors ) eam. | ranspor lines 7 J
Simulation Initial With Phase-lll final 1B T(BT§’ 7" "
particles | Radiation | requirement ng ,':)’T XS TH Ly %
\k_ ( O)
e- (7 GeV) yBe, [um] 20 40 ->The maX|muc°§§5em|ttance can be reIaxed y
e+ (4 GeV) yBe, [um] 64 74 100 = Now in re-considering
M. Kikuchi | Simulation Result - Ragdiation excitation has little dependence
: : : : , , on initial emittance.
B 1 + By the radiation excitation, emittance
€ A r growth of e-/e+ beam is about 48/10 pum.
o = 65 um 5 7+ The beam size at the injection septum is 0.31
8 mEy H - S- earrE mm, assuming Bx = 20 m. The required
£ 6/ / E injection aperture is still dominated by the
§ Eoewr o vex=20um 1 septum width of 2.5 mm. Although the
L 7 .
T S S N T emittance growth due to synchrotron

radiation is very big, it plays only a minor role

Input emittance e (nm L .
P o {(nm) on the injection aperture itself. 2
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3. Results of Emittance Measurement (e-)

« Unfortunately, tuning time of the LINAC was seriously limited in Phase 3.
« Emittance in Phase 3 is worse than that in Phase 2.

« Though residual dispersion and jitter emittance is small in LINAC, emittance growth perhaps
come from wakefield of cavity.

« Measured emittance at 27/Jun is worse than 10/Jun without special tuning.

« We hope that orbit FB, which start from 20/Jun, hold emittance quality.

« Inthe end of BT, emittance growth occurred. Vertical emittance can be explained by both
residual dispersion and jitter emittance.

« It seems that measured horizontal emittance growth at BT2 is larger than that of both residual
dispersion and jitter emittance. We are investigating this reason now.

X —=&— e- RF gun(Phase2) Y 200 [ | —*— e- RF gun(Phase2)
a0 = rEgmeno t |
[ Phased final target /"f 1 n C 150 [ Phase3 final target ¢
- [ /
£ Y / T | /fx ] /
= | - / = ool RN /1
~ 200fF P = 100f / .
>< B 'Il" / > 3 / .\x
(73] - / w : \.\ J
o= [ ;f o= 50 // Lo/
100 / [ / _:__F_,_,f

BN Csul N. lida | :;%- - |
ok ¥ T. Mori  Of
bttt M, Kikuchi bbbttt

B C 3 5 BT1BT2

B C 3 5 BT1BT2
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3. Results of Emittance Measurement (e+)

« In Phase 3, emittance growth was almost same as that in Phase 2.

« Emittance growth under ECS off was smaller than that under ECS on.

« Vertical emittance growth between BT1 and BT2 can be explained by
residual dispersion and jitter emittance.

« While, ratio of the horizontal emittance at BT2 to that at sector 5 is
about 4 though simulation result is 2. We are investigating this reason

NOW.
X 500 ' —4— e+ ECSOn T Y | [—— e+ ECS On
[ | —#— e+ ECS Off - % at.ECS Off
500 |- Phase3 final target i\_% | Phase3 final target
[ ! [
T 400f .. 1 nC A 60"
S - [ E
< 300:— I[[.l ~ 40}
w i ||." w
== 200F 14 > ol
100 [ i::::_“ IL__-_-_:_E N . Iida i J
i I T. Mori O'_ -
obt ottt it M. Kikuchi bttt e e b0t
3 5 BT1BT2 3 5 BT1BT2

(2019.6.28)
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SUMMARY

« In LINAC and BT, high charge and low emittance beam
transportation is necessary for SuperKEKB project.

« Current main emittance growth sources are residual dispersion
(beam phase space jitter), wakefield in acceleration cavity, and
acceleration of beam with dispersion.

Countermeasure:

Residual dispersion:
- Minimize An and An’inthe BT end.

Wakefield in acceleration cavity:

- For the main ring operation, tuning time of the LINAC was seriously limited.
For stable low emittance transportation, continuous emittance measurement
is strongly desirable. We will consider new diagnostic line at BT.

- Automatic orbit correction for minimizing emittance growth is also desirable.
We will introduce such wake free steering program using a screen in the new

line, for example.

Acceleration of beam with dispersion:

- The bending manets realignment and the quad installation in the ECS of SY3
are planned so as to cancel the quadrupole component of the bending

magnet.
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There are two
ARCs in the DR
extraction line.

The third graph
shows residual
dispersion.

Blue is horizontal
and red is vertical.

A) Residual dispersion in the DR extraction line

* This table shows values of residual dispersion before and after correction.

* Residual dispersion became smaller in both ARCs.
* In 1t ARC, residual dispersion is not still small enough.

<nx>>Y2 [m]

Extraction Septum

Fudge Factor of
Quad.
]

Optics of the
extraction line

€ e
>3k /o
e o000

—
N

il { | {
T T T T

: ]

e vt i el

DC Bends

Correction Before After Before After [%

2" ARC 0.079 00094 00077  -45

1t ARC 1.05 Need 0.09 g 0.02 0.01 -8.2

eed more study
Example: 15t ARC Before ‘ After dispersion correction
_1fE T T ,I },\ | _ 1F T T ’l T ™
b [ A | e | |
< E / N\ -3 3
R e K P s
e SN : L I e s 1 : I
T Ll T o = I T LI I T
|2 - E O3 E E*o;-
w2 7% I AR | B X I | s
% SEME A - g e
OF bt o k3 i B T v
Sat il = ' S
@ b E woaf I E 0 10
e et | I . 1wt
a-1f I | | I 3 a-1F | | I 3
0 10 20 30 40 0 10 20 | 30 40
/ gleee ¢ ¢ 2 9 Ge g @®ee ¢ 9 8 9
Extraction Kicker §§§ : % § ‘EREBR 5 8 % 587 2 3 ¢

20 30 40 50

5 33393988 8 2 8 £t
= ab 6-%65 B 8 & 8 B0

Y. Seimiya,
N. lida,
M. Kikuchi
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A) Residual dispersion and emittance growth

Emittance improvement by dispersion correction

e+ Residual Dispersion/Normalized Emittance DR design
0.7 [nC] emittance

Before correction After 2" ARC correction After 1t ARC correction

0.079 0.019
<nx2>12 [m] N
1.05_|IC > 0.09

vBex [um] 293+44.5 192+22.4 E=——) 126=+8.2 64.3

« Horizontal emittance became less than half
« |t is still twice as large as that of DR design.

CSR calculation (depend on beam charge and bunch length)

(105 w0 f CSR wake potential Tracking Result
_ D. Zhou _ Charge [nC] | AyBex/yBex
Theoretical = | 1 0.7 3.2x10°
Analytical < ¢ 5 P 3.1 x 105
o B A X
S . CSR at RTL is negligible.
1 [ - w
Wi(z) = %/ dwZ(w)p(w)e "e” 32



A) Residual dispersion in BT

* Until BT-Wire Scanner (WS) position, dispersion correction was done.
* Insome ARC, dispersion correction is not finished. - Continue to Phase-lll

2172 212 Quad®
we corrected :

dispersion in each Correction
ARC of BT. Slope1

BTe Arc#O
This table shows BTe Arc#l

residual dispersion  gre Arc#283
before and after

. Slope2
correction for e- STe Arcia
and e+ beam.

These ARC names
are listed from the Correction
upstream of the LTR Arc#1
beam line. RTL Arc#l
RTL Arci2
BTp Arc#O
BTp Arc#l
Slope1
BTp Arc#28&3
Slope 2
BTp Arci#4

Before
0.13
0.11

0.102
0.066
0.104

After
0.11
0.02
0.038
0.029
0.091

<hx?>1/2 [m]

Before

0.037
0.079
1.05
0.27
0.037
0.011
0.123
0.012

After
0.018
0.019
0.021
0.02
0.047

0.029
0.012

Before
0.05
0.01

0.029
0.037
0.192

After
0.01
0.02

0.036

0.034

0.015

<hy?>'/2 [m]

Before
0.019
0.0094
0.02
0.01
0.126
0.029
0.253
0.324

After
0.016
0.0077
0.01
0.03
0.102

0.313
0.017

[%
1.0~5.9
0~6.7
2.37
2.52
3.55
2.17

Quad®
Fudge Factor
]

%
-3.3,-24
-45
-8.2
-26~12.9
2.5
25
2.5~5.1
3.4

BT-WS placed

Y. Seimiya,
N. lida,
M. Kikuchi

Inj. point to MR

BT-WS placed

ol

Inj. point to MR

\F
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A) Dispersion induce by ST

-1A@PY172 PY182, OSA@PY184
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B) Effective emittance

Effective emittance, design emittance, emittance growth by beam jitter :

cerr =< (x+A2)2 >< (2/ + A2')2 > — < (z + Ax)(2/ + Ax’) >2
€0 =\<12><12>— <z’ >2
= /< Ax2 >< Ax2 > — < AzAz’ >.

Effective emittance can be described by design emittance and emittance growth
included by beam phase space jitter, < Az >

€eff =1/€5+ e? + eo(vo < Ax? > 209 < AzAx’ > +5y < Ax? >)

— 200 +
_ \/€%+€?+260€j(%5 20 ﬁ(ﬂ)

6(2) + 6? + 26ijBmag > €0 + €

Bmag (21) express amount of mismatching between < Ax >
beam optics and the jitter optics. (Not between beam

optics and the design optics.) If matching is perfect, , Nominal em|tt?nce
Bmag=1 Emittance growth by beam jitter

Bma,g ; (’Yoﬁ 20[0(){ —f—IBO’y) — |"B + @ + ( \/% . \/1870) ]

Once beam position and transfer matrix between two BPMs is identified, we can
derive beam angle.



B) Positron generation target

* As jitter source, components around target is suspected.

* Schematic layout of component around target.

side view

primary e- DC QM

structure

pulsei"""“ST

T. Kamitani slide

|
beam! injection e-

[
ux

Concenti

diaméter

rear view

diameter

target
offset
3.5 mm

FC offset

7.0 mm
FQ aperture

Target hole for electron beam

* Electron beam straightly pass through the positron
generation target hole, which diameter is 2 mm. 36



B) Dummy Target

* To reveal beam jitter source directly, we temporally replaced the target to
dummy target with several hole, which had different diameter.
* In autumn 2018, we studied the target hole effect on beam jitter.

Y. Enomoto et al.
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B) Dispersion effect on position jitter
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Pos. jitter

By, VB, (Vm)
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B) Orbit jitter and beta function

Nor. JEmit = .496 pm
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B) RF Phase Jitter and Energy Jitter

« Using RF monitor, energy jitter from RF phase was derived.

« 1000 shots, 15 minutes.

« Significant correlation can be seen at both J-ARC and LINAC end.

« Mainly the dependence come from RF zero cross phase as
mentioned in our slide.

ChiSquare = 79.7087 Goodness = .139405 ChiSquare = 2009.23 Goodness = .49405

. 9 L N _ _ ChiSquare = 2105.66 Goodness = .49405
4.57870 +/- .30035 0.516 1 +/- 1.38369 b = °.42078 +/ o 106975 4/ 10899 b 1.33557 /-
Cor.=.590, 05=.045% . Cor.=.438, 05=.049% -
J-ARC Li. end Cor.=.392
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B File Edit Browser Channel Axis Window

B) Orbit FB at BT

B File Edit Browser Channel Axis Window
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C) Simulation for minimizing emittance growth
induced by wakefield in acceleration structure

Particle tracking simulation was performed to evaluate

this emittance growth.

* YBEinj =10 um

Phase-Ill requirement:

(<50

(<20 um)

Simulation conditio‘ns:. * o, =13mm Horizontal : —
. Measured misalignments of acc. structure and * 05=0.4%
guadrupole magnet were used. « Q=5nC um)
. Aris diameter of acc. structure is about 20 mm. osndime —
After emittance is minimized at the
After orbit displacement is minimized end of LINAC
LINAC end:
Blue and red dot 103} _ 103 LINAC end:
show horizontal vBey : 240 um ' vBe, : 22 pum
and vertical yBe, : 120 um Be, : 11 um
emittance, ITTEEES YPEy - .
respectively. E . eo’ 1 =
° ' £_3102_ Y et coosed WS

- C o .0: #’ LR ¢ {@~10 :_ oo" ®ee —:
Blue and red line . o . ® “o
shows horizontal . f . . 1
and vertical [ oo o . ~ . ’
requirement of ' g0t T Sttt S S i
Phase-Ill. 101?;‘ “ | PRECRRAp— e PR

| -] I L1 1 1 I I - I | - I | | I | - | I: :| L1 1 I L1 11 I L1 11 I L4 11 I L1 11 I P B B | I 1
0 100 200 300 400 500 600, 0 100 200 300 400 500 600
s (m) End of LINAC s (m)

By the orbit correction for minimizing emittance growth, requirement of Phase-Ill can be satisfied.
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Emittance measurement (e-)

Green and blue plot show emittance of beam generated by RF gun.
Manual orbit correction was done so as to reduce the orbit distortion. By this correction,
emittance was reduced.

In Phase-ll, the requirement of e- emittance at the end of LINAC was satisfied.
However, emittance was increased in BT though dispersion correction was done.

in Phase 2

Left and right figure show horizontal and vertical emittance measured at each sector, respectively.

This growth is not caused by radiation excitation because BT-WS is placed around the start of BT.

f | —e—e-Therm
[ | —e—e-RF 6/29
r [ —e—e-RF 6/30

1.2n
C

ced by

—&— e-Therm
—&— e-RF 6/29
[ | —e— e-RF 6/30

N. lida
. e

—————— + —— Phase-ll

— — Phase-lll
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Emittance measurement (e+)
in Phase 2

* |In Phase-ll, the requirement of e+ emittance at the end of LINAC was also satisfied.
 However, e+ emittance was also increased in BT though dispersion correction was done.
* |nvestigations for this emittance growth source in BT are under going.

X 0.7nC Y N. lida
t | —e— et [ —e— o+

400 = —————— —— —— Phase-II
~ 300f T/ —~ 30F
E | E |
= —
Phase-Il ——x200p —————————g———1 > 20|
w [ -~ w [

= | o > [ === —— Phase-lll
Phase-Ill ———teof —— —————— || 1o}

P PP PPV EEPEEPREPE PR ....l...l.—.—-i...
4

NT
ot
n—

2 2 4 8 - 2 8
B C 5 BT 5 BT
Sector Sector
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D. Zhou

ex) Single-bunch effects: Longitudinal: CSR

» CSR at RTL of SuperKEKB
® Dependence between BCS acceleration voltage (Vrf) and CSR

effect
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1200

+30*
+1.5*
* Full width
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D. Zhou

ex) Single-bunch effects: Longitudinal: CSR

» Tracking with CSR: (Vrf=21.5 MV, Q=0.7 nC, Nbin=128)
e Np=1e6, GCUT=5
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D. Zhou

ex) Single-bunch effects: Longitudinal: CSR

Np=1eb

» Vrf=0. MV:

e W/O CSR, y&x = 91.484 nm
e With CSR, y&x =91.484 nm@4nC

»Vrf=21.5 MV:

e W/O CSR, y&x=91.563 nm
e With CSR, y&x=91.566 nm@4nC

» Vrf=23. MV:

® W/O CSR, y&x = 91.577 nm
e With CSR, y&x =91.583 nm@4nC
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ex) Very Rough Estimation of CSR

N. lida Handbook of Accelerator Physics and Engineering
3" Printing
Coherent syn- Z” 7 . 21/3 W s 1
2\ [ ik 04 0
chrotron radiation 0 = Ly (—) [—] Ty g VR
2 2.34/37 R2/3 »4/3
(CSR): [23- 5| L 2 3137 \3/ | R2 3437 R

Bunch moves in free | p (2/3) = 1.3541. Note: non-zero wake for test particle ahead of driv-

space on a circle of | ;0 particle. Wo(0%)/L = 0.1Zyey? /R, This is also used to approx-

radius R; k < v3/R. | o et aE Riah B : s S
See Sec.2.5.12. 1 ng 3; /265_ ;1/2l.ugh k for beam in beam pipe; shielded (suppressed) for

k=1/05,=150~1000 << y3/R=2.9e9

/0=377
Z”(k) = l/mdzi'lfll(z)e_ik: R=3.35m
¢ Jo sz=1~7mm
Zo e™/6 12\ K13 L=0.7938m
= =3 (5)7;73 (2) cc=1nC,
E=1.1GeV
dE=Z(k)L*I/E |=cc/ocz*C

dex=(nx*dE)?/pPx
Ayex=Sum}; dex)i=0.81um < 40um
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N. lida

ex) Very Rough Estimation of
Resistive Wall

Resistive Wall: [1]
pipe length L, wall
thickness 7, conduc-
tivity o., skin depth
Oskin-

Handbook of Accelerator Physics and Engineering

b/x > |z| = ¢/|w| >
by /3.

For t < b4 or very
low freq., and b/y >

le ~ ¢/ |w| > Vbt.

dE=(ZO/L)*L*I/E

dex=(nx*dE)?/pPx

Zn _wZy _ Zoc/ (xb?™)
L el 0 sen()i(1+6m)be 25,%4‘9 — by imet
£ bskin=y/2¢/(lw| Zo0d, |w|>cx/b, x =1/(Zooch)
z) = %z,t fa c Za T
m=  pmtl 1/2
i 1+ 6om WOOskinb?m™ 1 W! =— ° % L
™ 2w (14 6m0) \ o |2]3/2
Z(l)] e 1Zotw ZiL o 120t Wé - Zotc _, Wi Zote
T o D | R e i
Z0=377
R=3.35m
sz=1~7mm
Ayex=Sum}; dex)i=0.0012um << 40um 1=0.7938m
cc=1nC,
E=1.1GeV
|I=cc/ocz*cC
m=0 50




