Collision Tuning Dithering system

KEK

R. Ueki, Y. Funakoshi, T. Kawamoto, M. Masuzawa, S. Nakamura, T. Oki, M. Tobiyama, S. Uehara

SLAC

A. S. Fisher, M.K. Sullivan, D. Brown

ANL

U. Wienands

LAL

P. Bambade, S. Di Carlo, D. Jehanno, C. Pang CERN

D.EI Khechen

Contents

1. Dithering system

- 2. Study during Phase-2 and Phase-3 spring commissioning
 - 1. Luminosity scan
 - 2. Feedback test

3. Summary

Dithering system

Beam-beam parameter

ξy	0.0881	0.0807	Beam-beam deflection
ξx	0.0028	0.0012	Dithering feedback

Dithering feedback system was used at SLAC for PEP-II

By dithering LER beam, luminosity is modulated at dithering frequency

Hardware of dithering system

- 8 sets of Helmholtz coils designed and fabricated at SLAC as dithering coil
- \cdot The coils were installed in LER beam line

Other hardware

TsukubaB4 control room

PLC (Yokogawa), ADC, DAC

Lock-In Amplifier Signal Recovery Model 7230 DSP @Belle 2 Electronics Hut 12ch Phase adjuster / 12ch Programable amplifier

Luminosity scan in the Horizontal direction

- We checked the response of the lock-in amplifier
- Using local bump system at HER, horizontal offset was changed from -120 to 100 um
- measuring magnitude, phase and luminosity during horizontal scan

Condition	
By*	2 mm
luminosity	2.8 × 10 ³³ cm ⁻² s ⁻¹
Dither Amp	20 um
Freq	79 Hz
Scan range	-120 um → 100 um

Luminosity peaked at the point of magnitude minimum and phase inversion

Luminosity degradation by hourglass effect

Coupling in the vertical direction

- Horizontal dither is coupling vertically
- In rough estimation, vertical dither amplitude
- due to coupling is ~ 0.02 um
- Possible cause is x-y coupling at IP
 - when vertical offset of two beams is small,
 - vertical dither does not affect horizontal feedback
 - if vertical offset large, minimum point of the lock-in amp magnitude does not coincide with luminosity peak
- It would be possible to cancel coupling component
- applying additional vertical dither intentionally or adjusting x-y coupling parameter (R1)
- Vertical dither feedback may be useful for beam tuning

Feedback test - parameter optimization -

Dithering feedback algorism is based on PI control \rightarrow To need optimize the feedback gain We did 3 feedback tests changing the integral gain

• As a result of adjusting the integral gain,

Horizontal offset approached to target position without large overshoot.

Feedback Test - stability of feedback -

The cause is not understood yet

•We are checking algorism of system

Luminosity degradation due to offset at each beta y*

 $\beta_y^* = 2 \ mm$ (Phase3 spring commissioning) $\Delta x = \pm 20 \ \mu m$ degradation is small

$$egin{aligned} eta_y^* &= 1 \; mm & (ext{next step}) \ & \Delta x &= \pm 20 \; \mu m \ & \downarrow \; 5 \; \% \end{aligned}$$

$$eta_y^* = 0.3 \ mm$$
 (design)
 $\Delta x = \pm 20 \ \mu m$
 \downarrow more 50 %

Simulation of luminosity degradation by Ohmi-san

Summary

- -All components of dithering system were prepared before Phase-2 commissioning
- •We checked lock-in amplifier response and did dithering feedback test

Luminosity scan

- •We successful found Luminosity peak from magnitude and phase of Lock-in Amp
- Horizontal dither is coupling vertically

Feedback test

- -by adjustment of integral gain, horizontal orbit converged to the optimal orbit
- Dithering feedback system does not operate now.
- •When beta is squeezed and luminosity degradation due to horizontal offset become remarkable, dithering system will be needed in order to keep high luminosity

Trend graph of current and luminosity

Feedback algorism

• Beam-beam deflection (SLC, KEKB vertical)

	LER	HER
垂直(ξy)	0.0881	0.0807
水平(ξx)	0.0028	0.0012

• Luminosity feedback (dithering)(PEP-II)

When we shake the beam at around the peak of the luminosity (dithering), the dithering frequency in the luminosity is minimized and there appears twice of the the dithering frequency.

Horizontal bump

Luminosity scan in the horizontal direction (LumiBelle2)

Horizontal offset [µm]

Luminosity scan to Horizontal direction

Lock-in output with vertical offset

Vertical offset of LER and HER beam

- \rightarrow The point of magnitude minimum and phase inversion shift from luminosity peak
- \rightarrow Horizontal feedback dose not work properly

- It's important to maintain good vertical collision point for accurate horizontal feedback
- High frequency fluctuation can be not collected,
 Slow drift during long time can be collected using vertical dither

Luminosity scan to Vertical direction

Input	LumiBelle2
Dither Amp	20 um
Freq	79 Hz

Vertical Dither ON		
Dither Amp	0.07 um	

Feedback test

Luminosity degradation by horizontal offset

Continuous Injection mode		
HER	250 mA (-1% Auto injection)	
LER	250 mA (-1.5% Auto injection)	
Fill pattern	6.12 spacing 1train, 789 bunches	

By fitting parameter			
	Σ_{χ}		
0.	13657		
0.	15201		
Δx	x = 100	μm	
$\rightarrow \frac{I}{-}$	$\frac{L(x)}{x} = 2$	20 %	

 L_0

	$L(x)/L_0 =$	$\exp(-\frac{\Delta x^2}{2\Sigma_x^2})$)	
	$\Sigma_x^2 = \sigma_{x+}^{*ef}$	$\sigma_{x-}^{*eff2} + \sigma_{x-}^{*eff2}$		
	$\sigma_{x\pm}^{*eff} = \sigma$	√zsinØ _c		
r	By bunch le	ength and ha	alf crossing a	ngles
	σ_{z-}	σ_{z+}	Σ_{χ}	
	5.64 mm	4.99 mm	0.312	
	$\Delta x =$	$100 \ \mu m \ ightarrow$	$\frac{L(x)}{L_0} = 5 \%$,)

Luminosity scan to Horizontal direction (LumiBelle2)

	Input	LumiBelle2		
	Dither Amp	20 um		
	Freq	79 Hz		
	CCC	ON		
	iBump FB	ON		
$L(x) = 1 - b(x - 20)^2$				
$L(-75) = 0.8 \rightarrow b = 2.2 \times 10^{-5}$				
$\frac{dL}{dx}(x) = -4.4 \times 10^{-5}(x - 20)$				
$= -1.3 \times 1$	0^{-5}			

$$\frac{dL}{dy}(50) = -1.3 \times 10^{-5}$$

$$MagDitherx(x) = \frac{dL}{dx}(x) \times \Delta x$$

$$MagDithery(50) = -1.3 \times 10^{-3} \times \Delta x$$

$$MagDithery(11.7) = -1.0 \times \Delta y$$

$$MagDithery(50) = MagDithery(11.7)$$

$$-1.0 \times \Delta y = 1.3 \times 10^{-3} \times 20 \mu m \rightarrow \Delta y = 0.026 \mu m$$