RF GUN, LASER & ELECTRON BEAM COMMISSIONING

The 23rd KEKB Accelerator Review Committee

Rui Zhang 2019.07.09

Accelerator Laboratory Division V, Injector G

SuperKEKB REQUIREMENTS

	Electron HER 7 GeV	Positron LER 4 GeV
Normalized Emittance	40 / 20 [μm]	100 / 15 [μm]
Energy Spread	0.07%	0.16%
Bunch Charge at Injection Point	994.0 nC	4.0 nC

Stable electron beam with high charge and low emittance is required for SuperKEKB

SuperKEKB RF Gun

Requirements

- 4 nC electron charge generation
- 10 μm emittance preservation
- Long term operation

Operating at 4 nC

- Less space charge effect
 - Longer pulse: 20-30 ps
- Necessary strong focusing field
 - Preserves the emittance
- Stable long time operation
 - Lower electric field: < 100 MV/m

Side coupler or Disk and washer is preferred

S-band RF Gun System for SuperKEKB

RF gun cavity: strong focusing electric field

- Disk and washer (DAW): tested in 3-2
- Quasi travelling wave side coupler (QTWSC): A1 primary RF gun
- Cut disk structure (CDS): A1 secondary RF gun

Photocathode: long life time

- Medium QE with long life time: $10^{-4} \sim 10^{-3}$ @266nm > 1 year
- Metal composite: Ir₅Ce

Laser: simple, stable with temporal and spatial manipulation

- Laser active material pumped by laser diode
 - Yb doped fiber & Neodymium (Nd) doped laser crystal: A1 ground laser hut
 - Yb doped fiber & Ytterbium (Yb) doped laser crystal: A1 underground laser hut
- Temporal and spatial reshaping for minimum energy spread and emittance

Injector Section for SuperKEKB

Primary RF gun

- QTWSC cavity
- Adopted in this stage
- <u>1st milestone: full</u> regular operation for the injection of HER (R4.3)

Thermionic gun

- In the 2nd layer
- Used for positron target, PF and PF-AR

Secondary RF gun

- CDS cavity
- Never used in this stage

Photocathode in Primary RF Gun

	Off line	Online	Improvement				
Ir ₇ Ce ₂	1.0×10^{-4}						
FY2018 Ir ₇ Ce ₂ + Heating	-	1.5 x 10⁻⁵	In 2020, online				
FY2019 Ir ₂ Ce + Heating	5.0 x 10 ⁻⁴	1.5 x 10⁻⁴	QE will be improved 10				
FY2020 Ir ₂ Ce + Heating + Better Vacuum	5.0 x 10 ⁻⁵	2.0 x 10 ⁻⁴	times nigner				

Current Nd/Yb Hybrid Laser System (R4.1)

	Menlo Orange 1 (1064	nm	n by SPM)				4 months
Fiber	Menlo Orange 2 (1064	nm))	\rightarrow	MEMS Switch	2-	> 0 fault
Oscillators (114 MHz)	Home made ANDi type	106	4 nm		3 In 1 Out		operation!
Fiber Amplifiers	Yb Single mode Fiber Amplifier 1	\rightarrow	Semiconductor optics Amplifier (SOA) 114 MHz → 10 MHz	\rightarrow	Yb Single mode Fiber Amplifier 2	\rightarrow	Yb Single mode Fiber Amplifier 3
Nd:YAG Rod Laser Amplifiers	EO Pulse Picker 10 MHz → 1-50 Hz Double bunch Beam splitter 50:50	<u>}</u>	1st Nd:YAG Laser Line 2nd Nd:YAG Laser Line	ers ers	4 months 0 fault operation!		
Wavelength Conversion	YCOB in 1st Laser Line 1064 nm → 532 nm BBO in 2nd Laser Line 1064 nm → 532 nm	\rightarrow	Beam Polarizer Combination for Two Laser Lines		Beam Polarizer Division for Two Laser lines	\rightarrow	BBO in 1st Laser Line 532 nm → 266 nm BBO in 2nd Laser Line 532 nm → 266 nm
Transporting Line for Two Lasers (11 m long)			Ground I → Tunne	个 er Hut F gun box			
RF Gun							From Two Injection Windows

Current Nd/Yb Hybrid Laser System (R4.1)

	Menlo Orange 1 (1064	nn	n by SPM)									
Fiber	Menlo Orange 2 (1064	nm)	\rightarrow	MEMS Switch							
Oscillators (114 MHz)	Home made ANDi type	106	i4 nm		3 In 1 Out							
Fiber Amplifiers	Yb Single mode Fiber Amplifier 1	\rightarrow	Semiconductor optics Amplifier (SOA) 114 MHz → 10 MHz	\rightarrow	Yb Single mode Fiber Amplifier 2	\rightarrow	Yb Single mode Fiber Amplifier 3					
Nd·VAG Rod Laser	EO Pulse Picker 10 MHz → 1-50 Hz		1st Nd:YAG Laser Line with 5 Stages Rod Amplifiers									
Amplifiers	Double bunch Beam splitter 50:50	Ļ	2nd Nd:YAG Laser Line	2nd Nd:YAG Laser Line with 5 Stages Rod Amplifiers								
Wavelength	YCOB in 1st Laser Line 1064 nm → 532 nm		Beam Polarizer		Beam Polarizer		BBO in 1st Laser Line 532 nm → 266 nm					
Conversion	BBO in 2nd Laser Line 1064 nm → 532 nm	\rightarrow	Combination for Two Laser Lines		Division for Two Laser lines	\rightarrow	BBO in 2nd Laser Line 532 nm \rightarrow 266 nm					
Transporting Line for Two Lasers (11 m long)			↓ Ground I → Tunne	Las el R	个 er Hut F gun box							
RF Gun							From Two Injection Windows					

Stable & Efficient Nd:YAG Amplifier (R4.2)

Layout of Nd:YAG rod amplifier

- High amplification efficiency with sample configuration
- Lower pump currents by use of high dopant Nd:YAG crystals (2018 summer)
- Trouble shooting in short time for stable and smooth commissioning
- No problem occurred during stage (more than 4 months)

Two Lasers Injection Mode (R4.1)

• Laser with vertical polarization, 1 laser with horizontal polarization, HWP: half wave plate

- Possible to generate high e⁻ charge
- Better emittance
- Backup for the smooth commissioning

-lorizontal section

Isosurface

17ps, σr=2mm Both Side

Beam direction

Controllable and Monitorable Laser (R4.2)

UV laser beam profile

- CCD setup at the virtual cathode position
- Net energy meter
- Remote control actuators for fine adjustment (20 pieces)

UV laser aperture

- Temporary setup for laser beam shaping
- Remote control

UV laser beam profile

Laser Status Monitoring System

A1 Laser Log

KEK e+/e- LINAC Operation page

home
 全て閉じる 全て開く
🖻 🚰 Information
KEK-LINAC Operation Manual
<u>KEK-LINAC Charge Limit</u> <u>Manual</u>
🕂 📑 Operation Log
🕂 📑 Schedule
- Trouble report
🗉 📑 Phone List
🖻 🚞 Linac Facilities
- Section ACC Information
🧐 <u>ACC Pukiwiki</u>
- 🧐 <u>A1 Laser Status</u>
🤒 <u>Mitsubishi-SC Pukiwiki</u>
Linac Screen & BPM osc
KEKB, PF-AR Video Server
KEKB SCREEN
KEKB BT SCREEN(jpeg)
KEK Electric Power Info

🗄 ᢨ Network

😬 Shift table

	Alarm History		
DateTime	Object	Value	Status
2019/06/18-23:59:59	1st_Line_NDYAG1_Energy	127.987	HIHI
2019/06/18-23:59:56	1st_Line_SHG_Energy	202.925	HIHI
2019/06/18-23:59:55	1st_Line_NDYAG1_Energy	127.424	HIHI
2019/06/18-23:59:50	1st_Line_SHG_Energy	199.738	HIHI
2019/06/18-23:59:49	1st_Line_NDYAG1_Energy	128.268	HIHI
2019/06/18-23:59:44	1st_Line_NDYAG1_Energy	128.924	HIHI
2019/06/18-23:59:44	1st_Line_SHG_Energy	204.949	HIHI
2019/06/18-23:59:40	1st_Line_NDYAG1_Energy	127.612	HIHI
2019/06/18-23:59:38	1st_Line_SHG_Energy	204.199	HIHI
2019/06/18-23:59:19	1st_Line_SHG_Energy	200.000	HIHI
2019/06/18-23:59:18	1st_Line_NDYAG1_Energy	128.924	HIHI
2019/06/18-23:59:17	1st_Line_SHG_Energy	201.312	HIHI
2019/06/18-23:59:09	1st_Line_SHG_Energy	200.787	HIHI
2019/06/18-23:59:07	1st_Line_SHG_Energy	202.700	HIHI
2019/06/18-23:59:03	1st_Line_SHG_Energy	200.450	HIHI
2019/06/18-23:58:58	1st_Line_NDYAG1_Energy	127.612	HIHI
2019/06/18-23:58:58	1st_Line_SHG_Energy	199.738	HIHI
2019/06/18-23:58:55	1st_Line_SHG_Energy	201.350	HIHI
2019/06/18-23:58:52	1st_Line_SHG_Energy	200.225	HIHI
2019/06/18-23:58:49	1st_Line_NDYAG1_Energy	127.612	HIHI
2019/06/18-23:58:42	1st_Line_SHG_Energy	199.738	HIHI
2019/06/18-23:58:40	1st_Line_SHG_Energy	200.450	HIHI
2019/06/18-23:58:30	1st_Line_SHG_Energy	201.837	HIHI
2019/06/18-23:58:28	1st Line NDYAG1 Energy	127.612	HIHI

1st Line SHG Energy

2019/06/18(火)

現在の状態

201.312 HIHI

http://www-linac.kek.jp/ope/opelog2/opelog.html

2019/06/18-23:58:25

Electron Beam Commissioning (R4.2 & R4.4)

High Charge Test under Full Laser Energy

Stable & Continuous Operation in the Commissioning

• More than 4 months stable and continuous regular injection (R4.3)

 Comparable low injection background

 Availability rate is 98.8% (MTBF: 394.1 h, MTTR: 4.6 h) (R4.3)

 Different correspondence for different study by altering e⁻ charge only a few seconds (R4.2)

Updates (R4.1 & R4.2)

- Install new Menlo fiber oscillator (1030 & 1064 nm) (2019 summer)
- Photocathode development for higher QE (2019 summer) - $Ir_7Ce_2 \rightarrow Ir_2Ce$
- Rebuild transporting line by use of relay imaging system (2019 summer)
- Improve temperature stability in the laser hut (2019 summer)
- Realize real time UV laser beam profile monitor (2019 summer)
 Available during continuous injection
- New RF gun for better vacuum level and higher RF power (from 2020)

Laser for Middle & Later Stages of Phase III

_aser temporal reshaping for low emittance, low energy spread, and injection noise suppression

Phase space

Energy spread

- Coherent pulse stacking technology by use of the birefringent effect of crystal
- Demonstrated in Nd laser system (Supported by Dr. Honda in 2018, R4.2)
- Due to the narrower spectrum width of the current Nd laser system (wider temporal width), the real rectangular shape is impossible (Fourier transform limit)

Nd laser system: 17 ps

Yb laser system: 2.5 ps

• Yb laser system is the best and only candidate for low energy spread and low emittance electron beam generation in Phase III

	2019 Q1	2019 Q2	2019 Q3	2019 Q4	2020 Q1	2020 Q2	2020 Q3	2020 Q4	2021 Q1	2021 Q2	2021 Q3	2021 Q4
Nd Laser System		l	Primary las	Backup laser system for SuperKEKB								
Yb Laser System	Laser	& monitor	ring system	n preparati	on with sta	acking	e⁻ bea	m test	For	RF gun and	d HER injed	ction

Summery

- Continuous and stable full RF gun operation in this stage
- Simple and precise laser and electron beam adjustment thanks to the available monitors and remote control components
- Increase the stability of laser and electron beam
- Will focus on improving the quality of electron beam by the Yb laser system

Recommendations of the 22nd Review

Recommendations:

R4.1: Prepare a maintenance plan for the RF gun and associated hardware to improve the long term reliability.

R4.2: Develop a detailed plan to make the existing gun and laser meet the beam parameters needed for SuperKEKB Phase-III commissioning, with only modest upgrades since the e-source is very important for commissioning plan. Consult nearby local laser experts as needed.

R4.3: Run the RF gun with full beam parameters for several weeks continuously to make sure no hidden problems arise.

R4.4: Continue to work on temporal pulse shaping to allow higher bunch charges and smaller energy spreads.

R4.5: Work on any new gun or laser ideas and R&D paths with a lower priority.

Plan

- 2019 summer: Improve stability of laser system and performance of photocathode
- 2020 summer (2019 winter): Improve the quality of electron beam
 - Laser pulse temporal reshape: rectangular pulse shape
 - Laser pulse spatial reshape: flat-top beam pattern

Updates in 2019 Summer

- Install new Menlo fiber oscillator
- Rebuild transporting line by use of relay imaging system
- Improve temperature stability in the laser hut
 - Water cooling for optics table
 - Exchange powerful air-conditioner
 - Add insulation layer for the west wall of laser hut
- Realize real time UV laser beam profile monitor
 - Available during continuous injection

Updates in 2020

• Temporal reshape: Pulse stacking for low energy spread

Input laser pulse with temporal Gaussian shape (FWHM~10 ps) Pulse stacking setup made by a crystal array (birefringent effect of crystal)

Output laser pulse with temporal rectangular shape (FWHM~40 ps)

* Supported by Dr. Yosuke Honda

Two stages stacking system made by YVO4 crystals

Updates in 2020

• Spatial reshape: Diffractive optics element (DOE) for low energy spread and emittance

DOE with micro configuration as homogenizer

The homogenization is obtain with the sum of the N*N sub-elements contributions

Simulation results: elliptical beam pattern

Updates in 2020

• Transverse reshape (spatial domain): Diffractive optics element (DOE)

- Two pieces of DOE are purchased (delivery date is September)
- One will be used for testing in 2020

Wire Scanner Result @ 5 Sector

Streak Camera Test Data by 2 Lasers

2 lasers mode

1st laser

2nd laser

Statistics

SKEKB į	運転中の期間																										
		1		時間		故障																					
			· · · · · · · · · · · · · · · · · · ·		発掘	188	Fi	ber	1st	Line	2nd	_ine	1st/2nd	共通部	制	卸関連	Trig (Î	号関連	RF 们	号関連	設仇		合	計	MTBF (h)	MTTR (h)	稼働率 (%)
		運転期間(h)	停止時間(h)	運転時間(h)	回数	故障時間 (h)	回数	故障時間 (h)	回数	故障時間 (h)	回数	故障時間 (h)	回数	故障時間 (h)	回数	故障時間 (h)	回数	故障時間 (h)	回数	故障時間 (h)	回数	故障時間 (h)	総故障回数	総故障時間(h)			
	$3/11$ 09:00 \sim 3/18 09:00	168	0	168	0	0	0	0	0	0	0	0	0	0	(0 0	0	0		0 0	0	0	0	0	168.0	0.0	100. 0
	$3/18 \sim 3/25$	168	0	168	1	1.2	0	0	0	0	0	0	0	0	2	2 3.63	0	0		0 0	0	0	3	4.83	56.0	1.6	97.2
	$3/25 \sim 4/1$	168	1.17	166.83	0	0	0	0	0	0	0	0	0	0	(0 0	0	0		0 0	0	0	0	0	166.8	0.0	100. 0
	$4/1$ 09:00 \sim $4/4$ 16:00	79	0	79	0	0	0	0	0	0	0	0	0	0	(0 0	0	0		0 0	0	0	0	0	79.0	0.0	100. 0
	$4/17$ 14:00 \sim $4/22$ 09:00	115	0	115	0	0	0	0	1	22	0	0	0	0	(0 0	0	0		0 0	0	0	1	22	115.0	22.0	83.9
	$4/22$ 09:00 \sim 5/6 09:00	336	3.23	332.77	0	0	0	0	0	0	0	0	0	0	(0 0	0	0		0 0	0	0	0	0	332.8	0.0	100. 0
	$5/6~\sim~5/13$	168	0	168	0	0	0	0	0	0	0	0	0	0	(0 0	0	0		0 0	0	0	0	0	168.0	0.0	100. 0
	5/13 ~ 5/20	168	4.1	163. 9	1	0.4	0	0	0	0	0	0	0	0	(0 0	0	0		0 0	0	0	1	0.4	163.9	0.4	99.8
	$5/20 \sim 5/27$	168	1.15	166.85	0	0	0	0	0	0	0	0	0	0	(0 0	0	0		0 0	0	0	0	0	166.9	0.0	100. 0
	$5/27 \sim 6/3$	168	1.5	166. 5	0	0	0	0	0	0	0	0	0	0	(0 0	0	0		0 0	0	0	0	0	166.5	0.0	100. 0
	$6/3 \sim 6/10$	168	0	168	0	0	0	0	0	0	0	0	0	0	(0 0	0	0)	0 0	0	0	0	0	168.0	0.0	100. 0
	$6/10 \sim 6/17$	168	2.08	165.92	1	0.5	0	0	0	0	0	0	0	0	(0 0	0	0)	0 0	0	0	1	0.5	165.9	0.5	99.7
	$6/17 \sim 6/24$	168	0	168	0	0	0	0	0	0	0	0	0	0	(0 0	0	0)	0 0	0	0	0	0	168.0	0.0	100. 0
	$6/24 \sim 7/1$	168	0	168	0	0	0	0	0	0	0	0	0	0	(0 0	0	0)	0 0	0	0	0	0	168.0	0.0	100. 0
	合計	2378	13. 23	2364.77	3	2.1	0	0	1	22	0	0	0	0	2	2 3.63	0	0		0 0	0	0	6	27.73	394.1	4.6	98.8
Linac Ì	運転全期間																										
			a verder	n4 88											古	汝 障											
		1	レーザー連転	時間	発	辰器	F	iber	1st	: Line	2nd	Line	1st/2n	d 共通部	制	順調調連	Trig	信号関連	RF	信号関連	= <u></u>	储		合計	MTBF (h)	MTTR (h)	稼働率 (%)
		運転期間(h)	停止時間(h)	運転時間(h)	回数	故障時間	回数	故障時間 (b)	回数	故障時間	回数	故障時間 (b)	回数	故障時間 (b)	回数	故障時間 (b)	引回数	故障時間 (b)	目回数	故障時間 (b)	回数	故障時間 (b)	総故障回数	総故障時間(h	.)		
	$2/4$ 09:00 \sim 7/1 09:00	3218	37.91	. 3180. 09	9 5	2. 27	() () 4	1 229.72	E	47.45	5 0	C)	2 3.6	3	0	0	1 1.5	7 3	8.5	5 2	0 293.1	9 159.0	14. 7	91.6
					******	同期外れ			22222222	FEO駅1道安! たNDYAG3と	9	EO軌道変	:動こよるNDN :動によるNDN	/AG1)版少 /AG1減少	*****	## 制御用IC ## 制御用IC)CI学止)Cl停止		######	## 10MHz 当	1 ######### ##########	- ハット内温 - ハット内温	i底上升 I度上昇				
					#########	114MHz IG	位相ずれ		2019/3/4		t#####################################	EO軌道変	動こよる復旧	調整							2019/3/3	I ハット内温	腹上昇				
					*****	同期外れ			*****	[#] NDYAG3訪	<mark>t</mark> 2019/3/9	NDYAG1	出力変動														
					*****	地震による	114MHz IG	すれ			2019/3/9	NDYAG1	如章			-				-							

MTBF (Mean Time Between Failure、平均故障間隔) MTTR (Mean Time To Repair、平均修理時間) 稼働率 = MTBF ÷ (MTBF+MTTR)

Ir₂Ce: Simple Test Result

Yb:fiber/Nd:YAG laser in Phase II

Improvement of e⁻ Stability in Phase III

Stable $e^- \rightarrow$ Improved the laser stability by water cooling for optics table

- Temperature stability for laser environment
- Flexible silicon tube for cooling

20	Two days laser operation history	 Запразна се се
229 -	Laser output	Note that the second
20 -	1st Amp	
11.7	he and the second of the secon	
10		
122 -		
	2nd Amp)
10	ᡊᢦ᠆ᡅᡀᡊᠯᡔᡡᡆᠰᢞᠣᡆᢦᡀᢣᡛᢦᡆ᠆ᡙᡔᠬᠬᡡᠧᠧ᠆ᠧᠧ᠕ᢐᢛᡄᠡᢞ᠆ᠬᡀᢍᢋᠴ᠆ᡙᡔᠿ᠋ᡰᢤᡰᢣᡆᢉᠴᢂᡃᡀ᠁ᠼᡣᢦ᠘ᢐᡀᡏᡐᠬᡗᠰ᠆ᡁᠰᠧᠰᠥᠿᠧᠬᠺᢥᢂ᠆᠂ᠰ᠆ᡔᡅᡆᡁᠺᠬᢦᡡ ᢅᢧᠰᡆᡗᡀᠹᡀ᠆ᠬᡀᡊ᠊ᢋᡆᡄᠺᡄᡊᡡᡄᢂ᠆ᡆᠧ᠆᠆ᡘᡰᡭᠯ᠆᠕ᡄ᠆ᢦᡭᡁᠺᡅᠬᡆᡀᡬᠧ᠆ᡆᡗᢤᠰᡄᢦᡊᠧᠿᢩᠮᡰᡂᡁᡄᠺᡆᠿᠰᠧ᠆ᠬᢍᡎᠰᠧ᠆᠈ᡀᢤᡧᡘᢩ	
83	Գ arc Նաշերանանակաշտումնումնումնումնությությունը, որումել որությունը, որուներությունը, որուներությունը, որուներությու	mp
0	Ath Ar	nn
		איי
4) -	᠆ᠧ᠁ᡣ᠁ ᢦᡁᡰᢛᡙᠳᡅ᠕ᡙ᠕ᡙᠬᢛᠲᡙᡊᢛᠲᡙᡀᡀᡀ᠕ᡁᠰ᠕ᡁᡁ᠕ᡁᡁ᠕ᡁᠰ᠕ᡁᠰ᠕ᡁᠬ᠕ᡁᠬ᠕ᡁᡁ᠕ᡁᡁ᠕᠆᠕ᡁᡀᡙᢛᠬᠬ᠕ ᢄ+b. ᠕᠁ᠵ	
ย บ	^ՠ ֈֈ՟֎ֈՠ֎ՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠ	Time

- Better stability for long time laser operation (fluctuation<5%)
- Less adjustment for continuous e⁻ generation

For High Quality e⁻

- Laser beam shaper for flat-top
- For Nd and Yb laser
- Under purchasing

- Pulse stacking by birefringent crystals
- Demonstrated in Nd laser
- Will be used in Yb:YAG laser for real flat

Beam homogenizer

- F: 1 m (Focal length of F lens)
- Φ: 6 mm (on target surface)
- Off-axis: 6 mm (distance between optical axis and center of target spot)
- β≈1°

Beam homogenizer

- Simulation result
- peak to valley modulations on the top hat: ±10%~15%
- Transmitting rate > 80%

RF-Gun for 5 nC

- Space charge is dominant.
 - Longer pulse length : 20 30 ps
- Stable operation is required.
 - Lower electric field : < 100MV/m</p>
- Focusing field must be required.

- Electric field focus preserve the emittance.

Required laser pulse energy

Current laser energy(500µJ)

Design of a quasi traveling wave side couple RF gun

Normal side couple structure

Quasi traveling wave sidecouple structure

Electron beam (EB) heating type cathode plug

[Design of EB heating type cathode plug]

Heating Test

[Experimental Setup & Results]

Heater Current (A)	16
Heater Voltage (V)	3.38
Intermediate electrode (V)	-25
High Voltage (kV)	2.3
Beam current (mA)	23
Beam Power (W)	52.9
Surface Temperature (degC)	1029

Heating a photocathode over 1000°C by EB heating method was succeeded.

3、Characterization

—SHG experiment at IMS

Growth and Characterization of ReCOB Crystals for OPCPA and QPCPA Applications, SICCAS, May, 2018

Phase II Nd laser module

