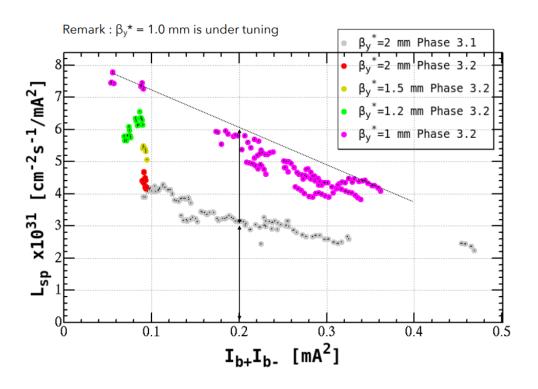

Luminosity performance for Crab waist operation in SuperKEKB


K. Ohmi July, 15,2020 MAC2020

SuperKEKB in 2019

Slide by Y. Ohnishi

 β_y^* is squeezed to 1mm in 2019. Specific luminosity is lower than expected value (~9x10³¹)at even low current. The beam-beam parameter is limited at 0.02 (HER is lower, due to LER blowup).

Try Crab waist in SuperKEKB

- Specific luminosity and beam-beam parameters were limited at lower values than expectation.
- Optics aberrations at IP (ex. Chromatic coupling) seems to degrade the luminosity performance, but the correction was not straightforward.
- $L_{sp}=40-50\times 10^{30}\,$ cm⁻²s⁻¹mA⁻², while the geometrical value estimated by beam size measurement is $L_{sp}=90\times 10^{30}.$
- Then we decide to try the crab waist.
- Crab waist can be realized in both of LER and HER by detuning of SLY (non-interleaved local chromaticity correction) strength.
- We expect improvement of luminosity using the crab waist.

$$L_{sp} = \frac{1}{2\pi\Sigma_{x}\Sigma_{y}e^{2}f_{0}}$$
 $\Sigma_{y} = 0.2\mu\text{m}, L_{sp} = 89 \times 10^{30} \text{ cm}^{-2}\text{s}^{-1}\text{mÅ}^{-2}$

Crab waist component

• θ_c : half crossing angle, 41.5mrad.

$$H^* = \frac{1}{4\theta_c} x^* p_y^{*2} = 6.0 x^* p_y^{*2}$$

Required crab waist term (80%)

$$H^* = 5x^*p_v^{*2}$$

 The component can be created by local chromaticity correction sextupoles.

$$H_S = \frac{K_2}{6} \left(x^3 - 3xy^2 \right)$$

Tⁱ is transfer matrix for IP to i-th sextupole.

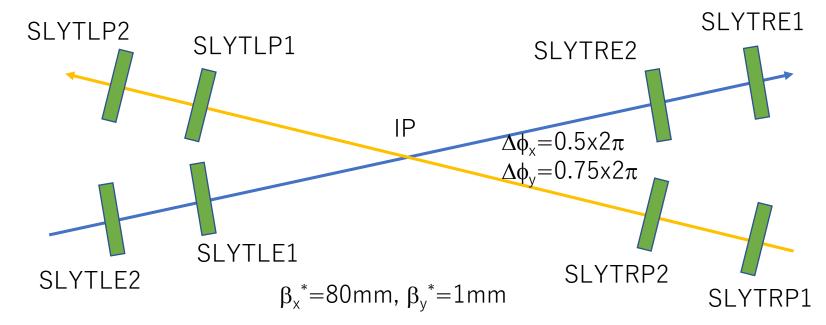
$$x_i(x^*, p_x^*) = T_{11}^i x^* + T_{12}^i p_x^*$$

$$y_i(y^*, p_y^*) = T_{33}^i y^* + T_{34}^i p_y^*$$

$$H^* = \frac{1}{4\theta_c} x^* p_y^{*2} = \sum_{i=1}^{N_L} \frac{K_{2,i}}{6} (x_i^3 - 3x_i y_i^2)$$

Betatron phase difference from IP is required $n\pi$ $H^* = \frac{1}{4\theta_c} x^* p_y^{*2} = \sum_{i=1}^{NL} \frac{K_{2,i}}{6} (x_i^3 - 3x_i y_i^2)$ Betatron phase difference from IP is required for x, $(\frac{1}{2} + n) \pi$ for y to produce xp_y^2 term at IP.

Betatron Phase variation Comparison between LER and HER


 $\beta_x^* = 80$ mm, $\beta_y^* = 1$ mm LER $\beta_x^* = 60 \text{mm}, \beta_v^* = 1 \text{mm}$ HFR

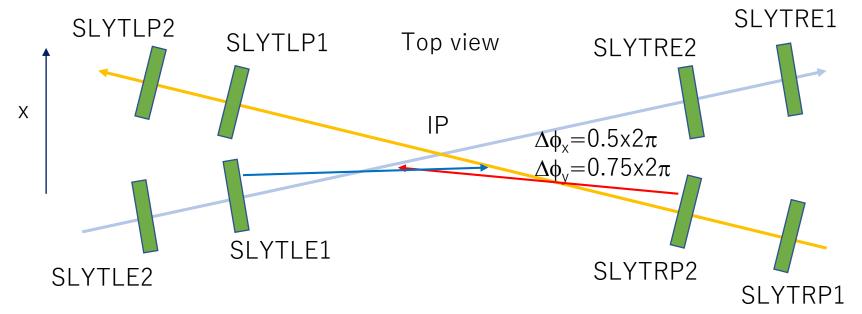
	AX	ВХ	NX	AY	ВҮ	NY	AX	ВХ	NX	AY	ВҮ	NY
SLYL1	-0.57066	5.66431	0.47977	32.53525	524.96	0.75059	-0.60132	6.50764	0.46799	8.26539	675.0993	0.74989
SLYL2	-0.75034	5.66431	0.97977	-33.0733	524.96	1.25059	-0.96485	6.50764	0.96799	-8.2618	675.0993	1.24989
SLXL1	12.54136	94.01306	1.1518	-1.90277	11.46071	1.85521	7.86044	51.47830	1.28484	-4.20090	16.84147	1.88390
SLXL2	-9.22825	94.01306	1.6518	0.71045	11.46071	2.35521	-7.86044	51.47830	1.78484	6.30734	16.84147	2.38390
SLXR1	8.47988	65.82581	-1.77001	-3.644	19.2571	-2.35147	-5.29293	135.30740	-1.74499	0.34348	1.13724	-2.49426
SLXR2	-9.32224	65.82581	-1.27001	3.75568	19.2571	-1.85147	5.24070	135.30740	-1.24331	0.40252	1.13724	-1.99426
SLYR1	0.65861	5.516	-0.97574	38.76399	521.2173	-1.24865	-0.01475	3.79083	-0.98869	79.7672-	701.63	-1.25022
SLYR2	0.66937	5.516	-0.47574	-39.2803	521.2173	-0.74865	0.67384	3.79083	-0.48869	-79.767	701.63	-0.75022
IP	0	0.08	44.53	0	0.001	46.5912	-0.00011	0.06	45.53302	-0.00209	0.001	43.57037

Crab waist (FCCee type, K. Oide et al., PRAB) can be tried using the local chromaticity correction sextuples in both of LER and HER, though the phase variation is not perfect especially in x.

Magnet configuration

Design β

	K ₂ (m ⁻²)		$K_2(m^{-2})$	
SLYTLE.1	9.5213	SLYTLP.1	1.4349	
SLYTLE.2	8.0697	SLYTLP.2	3.7171	


	$K_2(m^{-2})$		$K_2(m^{-2})$
SLYTRE.1	-7.9251	SLYTRP.1	0.9978
SLYTRE.2	-9.7211	SLYTRP.2	3.3356

	K ₂ (m ⁻²)		K ₂ (m ⁻²)	
SLYTLE.1	9.1304	SLYTLP.1	1.341	
SLYTLE.2	7.6788	SLYTLP.2	3.6239	

	K ₂ (m ⁻²)		K ₂ (m ⁻²)
SLYTRE.1	-8.1626	SLYTRP.1	1.1294
SLYTRE.2	-9.9586	SLYTRP.2	3.4679

Polarity Check for the final hardware arrangement

- LER beam travels right to left.
 - For X>0, Sextupole SLYTRP2 with larger K2(>0), focus/defocus in x/y direction.
 - Phase of X changes 180 degree.
 - Y waist shifts away from IP.
- HER beam travels left to right
 - The same condition as LER.

3rd order terms at IP in LER Crab waist

•	∟eft	

$K_2(m^{-2})$	xp _y ²	$p_x p_y^2$	xy ²	p _x y ²	xyp _y	p_xyp_y
1.4349	3.1435	-0.0321	43.8484	-0.4484	-23.4807	0.2401
3.7171	-8.1435	0.0833	-113.594	1.1616	60.8292	-0.622
0.6621	-0.0469	-0.0053	-28368.2	-3199.25	72.9414	8.226
0.6621	0.0469	0.0053	28368.17	3199.251	-72.9414	-8.226
	-5	0.0512	-69.7455	0.7132	37.3485	-0.3819
	1.4349 3.7171 0.6621	1.43493.14353.7171-8.14350.6621-0.04690.66210.0469	1.4349 3.1435 -0.0321 3.7171 -8.1435 0.0833 0.6621 -0.0469 -0.0053 0.6621 0.0469 0.0053	1.4349 3.1435 -0.0321 43.8484 3.7171 -8.1435 0.0833 -113.594 0.6621 -0.0469 -0.0053 -28368.2 0.6621 0.0469 0.0053 28368.17	1.4349 3.1435 -0.0321 43.8484 -0.4484 3.7171 -8.1435 0.0833 -113.594 1.1616 0.6621 -0.0469 -0.0053 -28368.2 -3199.25 0.6621 0.0469 0.0053 28368.17 3199.251	1.4349 3.1435 -0.0321 43.8484 -0.4484 -23.4807 3.7171 -8.1435 0.0833 -113.594 1.1616 60.8292 0.6621 -0.0469 -0.0053 -28368.2 -3199.25 72.9414 0.6621 0.0469 0.0053 28368.17 3199.251 -72.9414

R = 1 mm

Right

	K ₂ (m ⁻²)	xp _y ²	$p_x p_y^2$	xy ²	p _x y ²	xyp _y	p _x yp _y
SLXTRP.1	0.297	-0.0066	-0.0042	-3644.36	-2306.72	-9.8402	-6.2284
SLXTRP.2	0.297	0.0066	0.0042	3644.363	2306.719	9.8402	6.2284
SLYTRP.1	0.9978	-2.134	-0.0262	-153.026	-1.8809	36.1417	0.4442
SLYTRP.2	3.3356	7.134	0.0877	511.5711	6.288	-120.823	-1.4851
Sum		5	0.0615	358.5452	4.4071	-84.6811	-1.0409

• Uninvited parasitic terms appears due to imperfection of betatron phase, but their contributions are small (10% in normalized coordinates, $P_x P_v^2$.

3rd order terms at IP in HER Crab waist

 $8^* = (80,1) \text{mm}$

Left		K ₂ (m ⁻²)	xp _y ²	$p_x p_y^2$	xy ²	p _x y ²	xyp _y	p _x yp _y
	SLYTLE.1	9.5213	32.7962	-0.4012	15.9549	-0.1952	45.7498	-0.5597
	SLYTLE.2	8.0697	-27.7962	0.34	-13.5225	0.1654	-38.775	0.4744
	SLXTLE.1	2.8507	0.0568	-0.0163	76893.09	-22145.7	-132.138	38.0567
	SLXTLE.2	2.8507	-0.0568	0.0163	-76893.1	22145.72	132.1384	-38.0567
	sum		5	-0.0612	2.4328	-0.0292	6.9748	-0.0853
			_	_				
Right		$K_2(m^{-2})$	xp _y ²	$p_x p_y^2$	xy ²	$p_x y^2$	xyp _y	p _x yp _y
Might	SLXTRE.1	-3.4726	-3.86E-6	7.33E-6	-2957.06	5610.141	-0.2138	0.4056
	SLXTRE.2	-3.4726	3.86E-6	-7.33E-6	2957.06	-5610.14	0.2138	-0.4056
	SLYTRE.1	-7.9251	22.0628	0.0942	10.74	0.0459	-30.7866	-0.1315
	SLYTRE.2	-9.7211	-27.0628	-0.1156	-13.174	-0.0563	37.7637	0.1613
	Sum		-5	-0.0214	-2.4341	-0.0104	6.9771	0.0298

• Uninvited parasitic terms appears, but their contributions are small (10% in normalized coordinates, $P_x P_v^2$.

Measurement of Crabbing waist

- Apply x orbit at SLYTLP1 and SLYTRP2.
- Measure vertical beta at QC1 using K modulation.
- Measure vertical beta using orbit response.
- Check IP waist shift.

$$\delta x_{SLY} = 1mm \ @ \beta_{x,SLY} = 5.66m$$

$$\delta x^* = 0.12mm \ @ \beta_x^* = 0.08m$$

$$\delta s = \frac{\delta x^*}{2\theta_c} = 1.4mm$$

$$SLYTLP2$$

$$SLYTLP1$$

$$QC1LP$$

$$QC1LP$$

$$QC1LP$$

$$QUB1LP$$

$$QLC3LP$$

$$QLC3LP$$

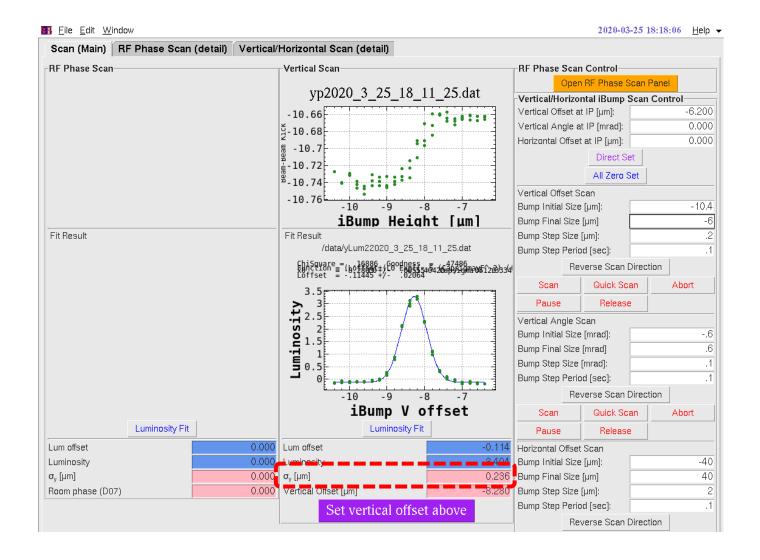
$$QLC3RP$$

$$QLC3RP$$

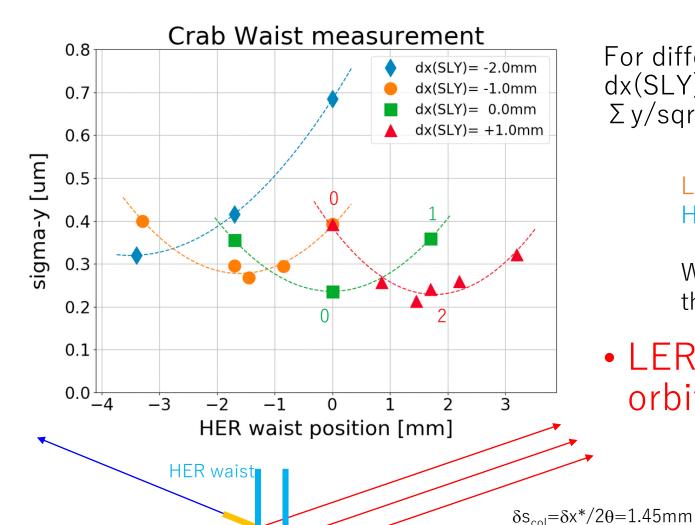
$$QLC3RP$$

$$QLB1RP$$

$$QLB1RP$$


 $\Delta \phi_{v} = 0.75 \times 2\pi$

Closed bump to create crabbing waist SLYTLP1 H. Koiso SLYTLP2 P # of NG BPMs: 0 / DX {avg, rms} (mm) m-g { 0.002, 0 m-r { 0.000. meas { 0.000, 0 max = 0.000mm@ MQC1LP min = 0.000mm@ MQC1LP 0.000mm @ MQ0 0.000 ± 0.000 DY (avg, rms) (mm) m-g { -0.048, (0.000 meas { 0.000, 0 max = 0.000mm @ MQC1LP min = 0.000mm@ MQC1LP 0.000mm @ MQ0 0.000 ± 0.000 -200 -100 100 200 Server: connected(LER:Orbit) Range DX G Auto G Fix(5) . FO GENERAL STAN GENERAL GEN Bump Condition Configuration-Control position dpx(mrad) ex(mm) epx(mrad) dy(mm) dpy(mrad) ey(mm) epy(mrad) Read Orbit PSLYTRC.2 Use inside bump steering Recall Calculate Bump Use inside -I cell steering PSLYTLC.1 Save Point


V-offset scan

• Σy measured by V-offset scan.

Crab Waist measurement

LER waist

 θ : half crossing angle

For different LER IP orbit offset dx(SLY), HER waist position changed and $\Sigma y/sqrt(2)$ measured.

LER crab waist HER no crab waist

Waist scan changing HER waist, then search LER waist

LER waist changes for LER IP orbit: crab waist

K modulation

• QC1 s=L*=900mm, waist shift δ s=1mm.

$$\beta(s) = \beta^* + \frac{s^2}{\beta^*} \qquad \Delta \nu = \frac{\Delta K_1 \beta}{4\pi}$$

$$\beta(s + \delta s) - \beta(s - \delta s) = \frac{d\beta(s)}{ds} 2\delta s = \frac{4s\delta s}{\beta^*}$$

$$\frac{\beta(s + \delta s) - \beta(s - \delta s)}{\beta(s)} \cong \frac{4\delta s}{s} \qquad \frac{\beta(s + \delta s) - \beta(s)}{\beta(s)} \cong \frac{2\delta s}{s}$$

$$\beta_y(s = 900mm) = 745m \qquad \beta(s + \delta s) - \beta(s - \delta s) = 3.6m$$

$$\delta \Delta \nu = \frac{\Delta K_1 \delta \beta}{4\pi} \qquad \frac{\delta \Delta \nu}{\Delta \nu} = \frac{\delta \beta}{\beta} \qquad \frac{\Delta K_1}{K_1} = 2 \times 10^{-4}$$

$$\Delta \nu = 0.01 \qquad \delta \Delta \nu = 0.5 \times 10^{-4} \text{ too small to be measured.}$$

- It seems to be difficult to measure crab waist using K modulation.
- Beam-beam scan is only possible way now.

Vertical orbit error in SLY

Vertical orbit in SLYTLP/E induces R1* at IP

$$H^* = \frac{1}{4\theta_c} x^* p_y^{*2} \approx \sum_{i=1}^{N_L} \frac{K_{2,i}}{6} \left(x_i^3 - 3x_i y_i^2 \right)$$

$$y_i (y^*, p_y^*) = T_{33}^i y^* + T_{34}^i p_y^* + y_{i,0} \ y_{i,0} = T_{34}^i p_{y,0}^*$$

$$T_{kl}^{SLY1} = -T_{kl}^{SLY2} \qquad y_{SLY1,0} = -y_{SLY2,0}$$

$$K_{2,SLY1} \neq K_{2,SLY2} \text{ crab waist}$$

$$H_R^* = -\sum_{i=1}^{N_L} K_{2,i} y_{i,0} x_i y_i = -\Delta K_{2,SLY} y_{SLY1,0} x_i y_i$$

$$= -\Delta K_{2,SLY} y_{SLY1,0} \sqrt{\frac{\beta_{x,SLY}}{\beta_x^*}} \sqrt{\beta_{y,SLY} \beta_y^*} \ x^* p_y^* = -R_1^* x^* p_y^*$$

$$R_1^* = \Delta K_{2,SLY} \sqrt{\frac{\beta_{x,SLY}}{\beta_x^*}} \sqrt{\beta_{y,SLY} \beta_y^*} \ y_{SLY1,0} = 10.4 \ y_{SLY1,0} = 10^{-3} \frac{y_{SLY1,0}}{\sigma_{y,SLY}}$$
 $\sigma_{y,SLY} = 72.5 \mu m$

V Orbit at SLY - Fluctuation of R1

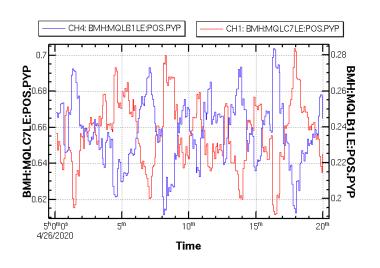
HER

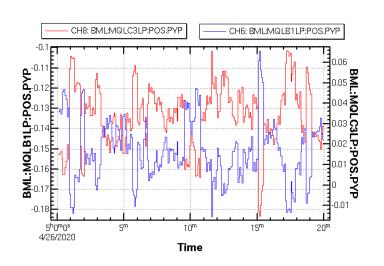
$$\delta R_1^* = \Delta K_{2,SLY} \delta y_{SLY1,0} \sqrt{\frac{\beta_{x,SLY}}{\beta_x^*}} \sqrt{\beta_{y,SLY} \beta_y^*}$$

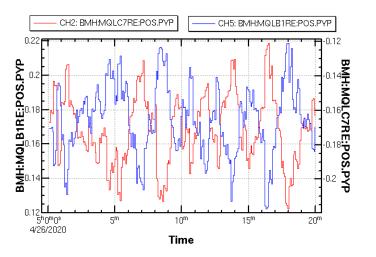
$$\delta y_{SLYE} = 0.08mm$$

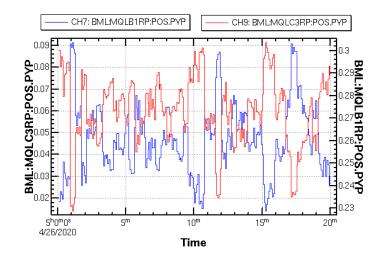
$$\Delta K_{2,SLYE} \sqrt{\frac{\beta_{x,SLY}}{\beta_x^*}} \sqrt{\beta_{y,SLY} \beta_y^*} = 6$$

 $\delta R_{1,E}^* = 0.5 mrad$

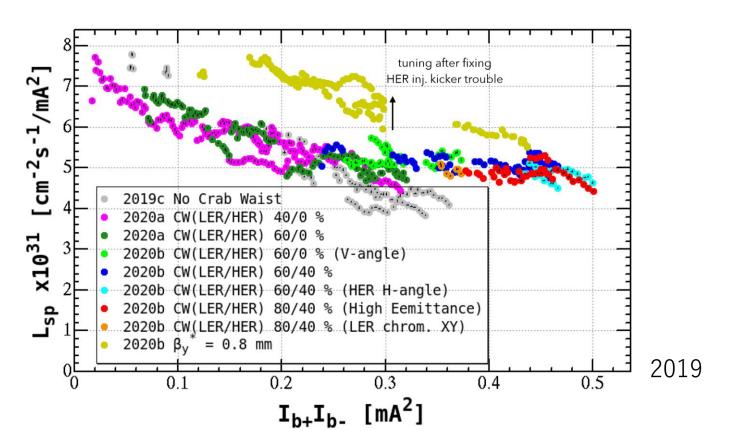

LER

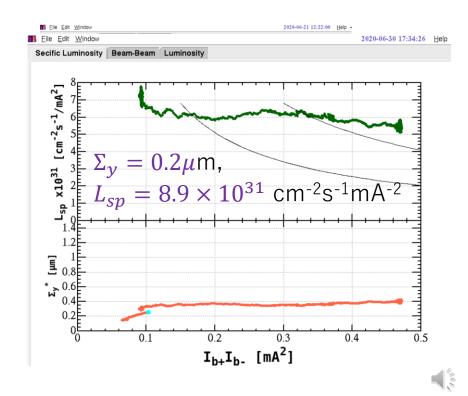

$$\delta y_{SLYP} = 0.09mm$$


$$\Delta K_{2,SLYP} \sqrt{\frac{\beta_{x,SLY}}{\beta_x^*}} \sqrt{\beta_{y,SLY}\beta_y^*} = 10.4$$


 $\delta R_{1,P}^* = 0.9 mrad$

Not large but visible

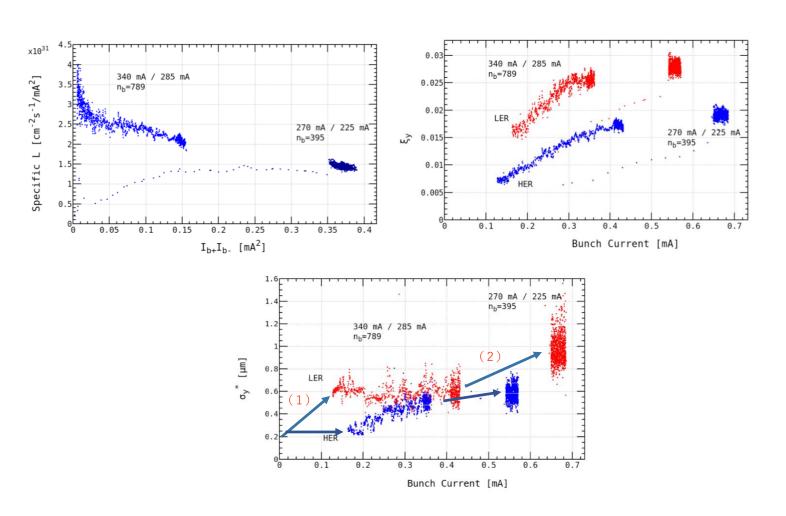




Luminosity performance in the crab waist operation

- Specific luminosity is almost constant at higher current 0.03mA.
- Convoluted beam size in single beam is $\Sigma_y{=}0.2\mu m$ ($\beta_y^{~*}{=}1mm$), the corresponding $L_{sp}{=}8.9x10^{31}$ cm $^{-2}s^{-1}mA^{-2}$
 - $L_{sp} = \frac{1}{2\pi\Sigma_{x}\Sigma_{y}e^{2}f_{0}}$

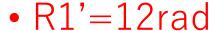
• Specific luminosity degrade at very low current < 0.03mA.


Status of crab waist operation

- Crab waist did not improve the luminosity performance drastically.
- Lsp degraded at low bunch current as the same as before.
- There were some improvement on the beam back ground and life time.
- At high bunch current, the gain seems to be clear.

Beam size blowup at very low bunch current collision observed since the early stage of commissioning

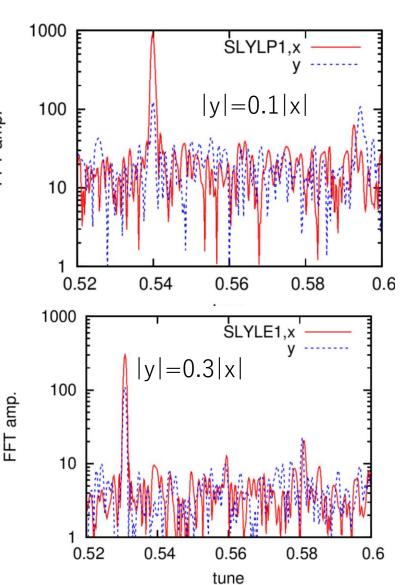
- $\beta_y = 3$ mm
- Two stage blow-up of LER beam
 - 1. Very small bunch current, $I_{+}I_{-}=0.01$ mA².
 - 2. High bunch current $I_{+}>0.5$ mA
- Single stage in HER
 - HER beam I₋>0.2mA.



Possible source of the beam size blow up at low current collision

K. Ohmi, retire seminar at Apr. 2019

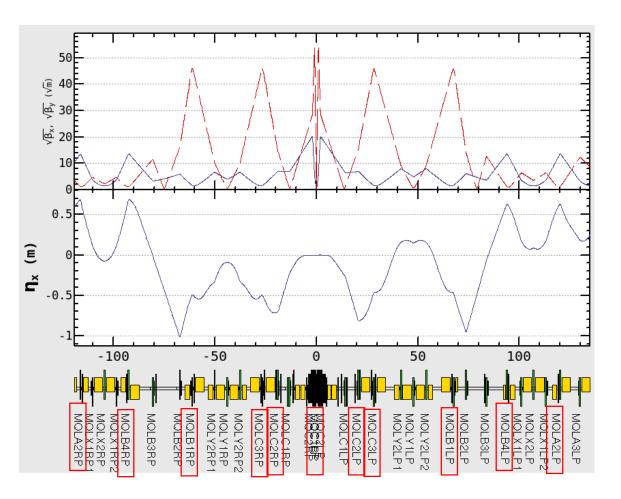
Chromatic, or nonlinear aberrations

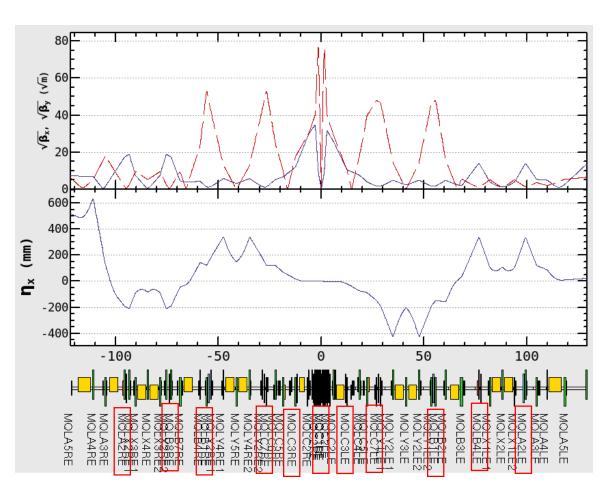


• R2'=3m 100 times larger for the early estimation. • $C(p_x^2p_y)=8$ Weak strong simulation with nonlinear IP aberrations $^{m spec}$ (10 30 cm $^{-2}$ s $^{-1}$ /mA 2) 30 30 spec (10³⁰ cm⁻²s $\beta_v = 3$ mm 20 20 15 15 10 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.15 0.2 0.25 0.3 0.35 0.4 0.05 0.1 $I_{+}I_{-} (mA^{2})$ I_I_I (mA²)

TbT optics (coupling) measurement at IR

- Search for the optics aberrations which degrades the luminosity performance.
- Excite x mode using injection kicker.
- Measure y oscillation with v_x .
 - R1: y motion with in-phase of x motion.
 - R2: y motion with $\pi/2$ deviation of x motion.
 - Strong vertical signal (30% of x) was seen in some BPM's.
- IP coupling is interpolated from QC1L-R monitors





IR optics and BPM's

LER

HER

x-y coupling | b | measurement

• y motion in X mode.

$$\mathbf{x} = RB\mathbf{X}$$

$$R = \begin{pmatrix} r_0 & 0 & r_4 & -r_2 \\ 0 & r_0 & -r_3 & r_1 \\ -r_1 & -r_2 & r_0 & 0 \\ -r_3 & -r_4 & 0 & r_0 \end{pmatrix}$$

$$B_X = \begin{pmatrix} \sqrt{\beta_X} & 0 \\ -\alpha_X/\sqrt{\beta_X} & 1/\sqrt{\beta_X} \end{pmatrix}$$

$$B = \begin{pmatrix} B_X & 0 \\ 0 & B_Y \end{pmatrix}$$

$$B_X = \begin{pmatrix} \sqrt{\beta_X} & 0 \\ -\alpha_X/\sqrt{\beta_X} & 1/\sqrt{\beta_X} \end{pmatrix}$$

$$y = -r_1 x - r_2 p_x = -r_1 a \cos \phi(s) + r_2 \left[\frac{a}{\beta} \sin \phi(s) + \frac{\alpha}{\beta} a \cos \phi(s) \right]$$

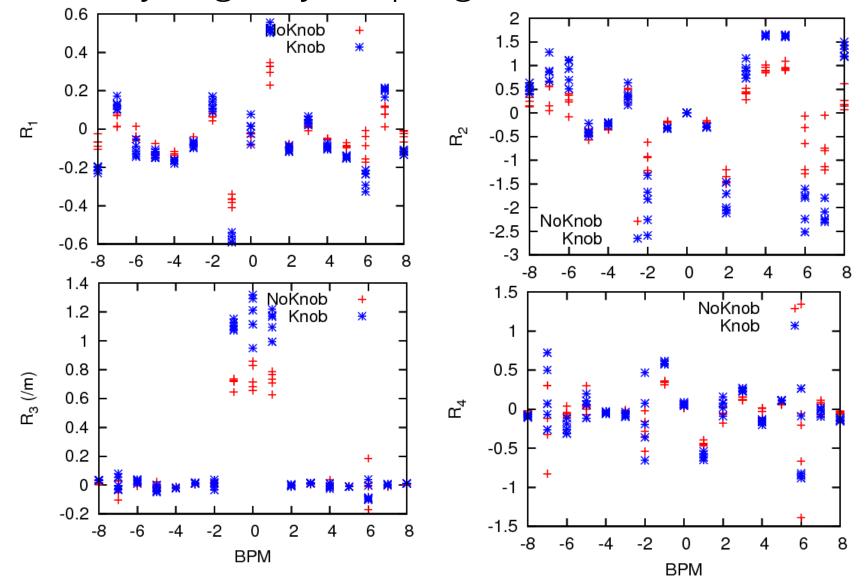
$$= c \cos(2\pi n v_x + \phi_y) \qquad \qquad \phi(s) = 2\pi n v_x + \phi_x$$

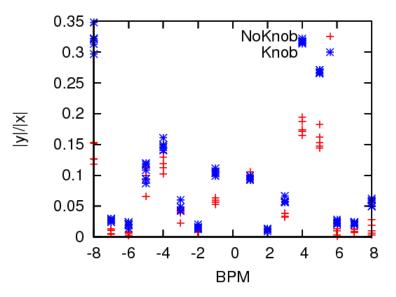
$$\frac{c}{a} \cos(\phi_y - \phi_x) = \left(-r_1 + r_2 \frac{\alpha}{\beta} \right) \qquad \qquad \frac{c}{a} \sin(\phi_y - \phi_x) = -\frac{r_2}{\beta}$$
in the figure

$$p_{y} = -r_{3}x - r_{4}p_{x} = -r_{3}a\cos\phi(s) + r_{4}\left[\frac{a}{\beta}\sin\phi(s) + \frac{\alpha}{\beta}a\cos\phi(s)\right]$$

$$= d\cos(2\pi n\nu_{x} + \phi_{q})$$

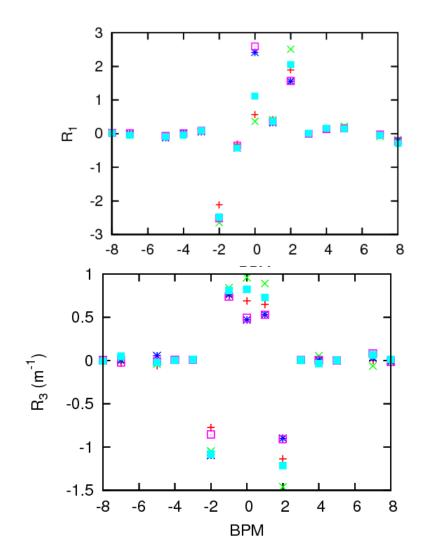
$$= d\cos(2\pi n\nu_{x} + \phi_{q})$$

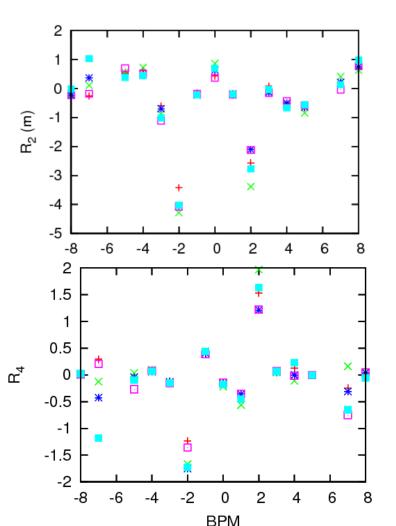

$$\frac{d}{a}\cos(\phi_{q} - \phi_{x}) = \left(-r_{3} + r_{4}\frac{\alpha}{\beta}\right)$$


$$\frac{d}{a}\sin(\phi_{q} - \phi_{x}) = -\frac{r_{4}}{\beta}$$

LER, Mar. 9, 2020

• Very large x-y coupling exists in IR.


BPM +:Left -:Right
1 QC1
2 QC2
4,5 SLY (Local Chrom y)
6,7 SLX (Local Chrom x)


Large y signal for x excitation

HER, Mar. 5, 2020

Very large x-y coupling exists in IR.

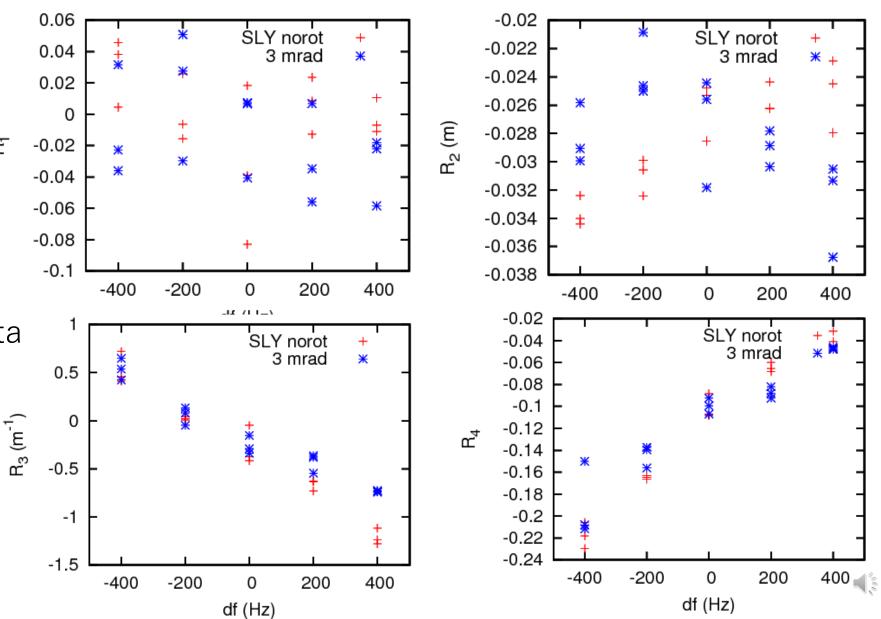
Beam-beam simulations considering the IR coupling at SLY

- Crab waist is realized by detuning of chromatic correction sextupole.
- X-y coupling at SLY may affect the crab waist.

Beam-beam simulation considering SLY coupling

Chromatic coupling at IP induced in IR area is not considered.

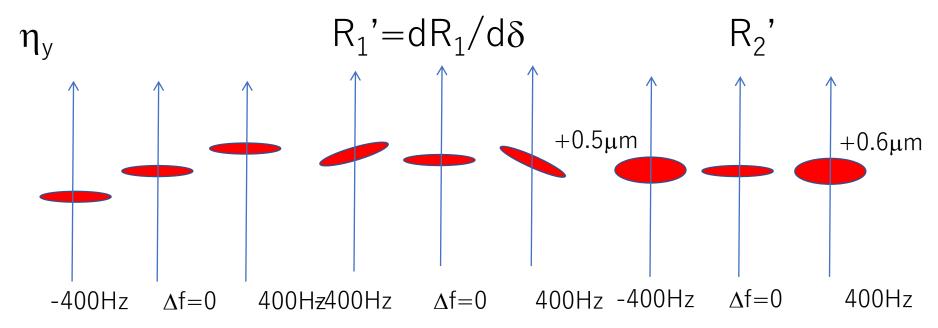
Weak-strong Simulation for the crab waist using detuned SLY w/o SLY coupling


- 1567 bunches, 0.9x1.1A, $\beta=80$, 1mm.
- Detuned SLY's.

```
SLYR1 K2=0.9978
                                                                                               CW.WS
twiss= 0.65861, 5.51600,-0.97574, 38.76399, 521.21731,-1.24865,
                                                                        6.5
      R=0.0133, 0.0766, 0.0138, -0.219
SLYR2 K2=3.3356
SLYR2 K2=3.3356
twiss= 0.66937, 5.51600,-0.47574, -39.28025, 521.21731,-0.74865, §
                                                                        5.5
      R = 0.0261, -0.123, 0.0051, -0.00087
SLYL1 K2=1.4349
twiss=-0.57066, 5.66431, 0.47977, 32.53525, 524.96002, 0.75059, \rightarrow
     R=0.052, -0.698, 0.003, -0.0967
                                                                        4.5
SLYL2 K2=3.7171
twiss = -0.75034, 5.66431, 0.97977, -33.07327, 524.96002, 1.25059,
                                                                                  10000
                                                                                           20000
                                                                                                   30000
                                                                                                            40000
     R = 0.075, -0.822, 0.0059, -0.0665
```

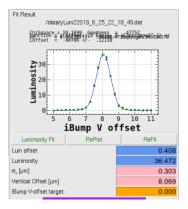
Effect (on momentum) of linear coupling at SLY is negligible in the crab waist collision. Parasitic terms also does not affect.

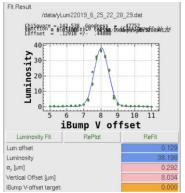
Chromatic coupling at IP in LER

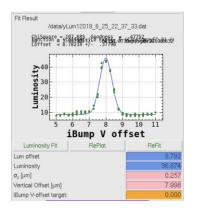

- SLY is rotated small angle as a test.
- Optics measurement —
 W/O SLY rotation
- R_1 and R_2 are hard to measure, while R_3 and R_4 are easy, due to beta squeezing.

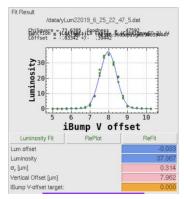
Measurement of chromatic coupling for R₁ and R₂

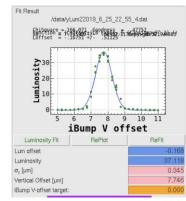
 If a chromatic beam size variation are seen, it can be source of luminosity degradation


$$\Delta f$$
=400Hz $\rightarrow \delta$ =0.17%




Measure the beam size using beam-beam scan (Luminosity.)




Vertical offset scan with different RF frequency

$$\Delta f = +400Hz$$

$$\Delta f = +200Hz$$

$$\Delta f = \pm 0Hz$$

$$\Delta f = -200Hz$$

 $\Delta f = -400$ Hz beam loss at the scan

Y. Funakoshi One cycle injection by Kaji.

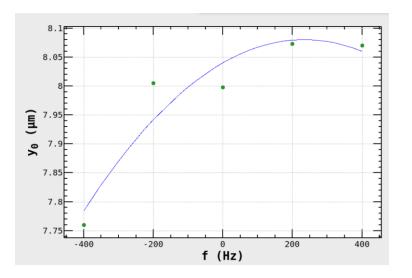
Vertical offset shift for frequency shift: IP vertical dispersion

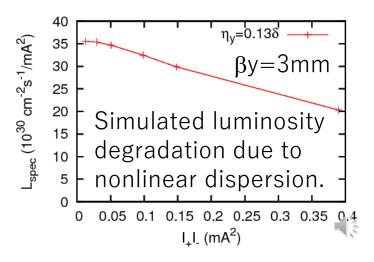
Vertical size variation for frequency shift beam energy: IP chromatic coupling

Latest data June 25,2019

Beam size variation for energy change was observed. Chromatic coupling exists at IP.

Nonlinear dispersion also exist at IP.



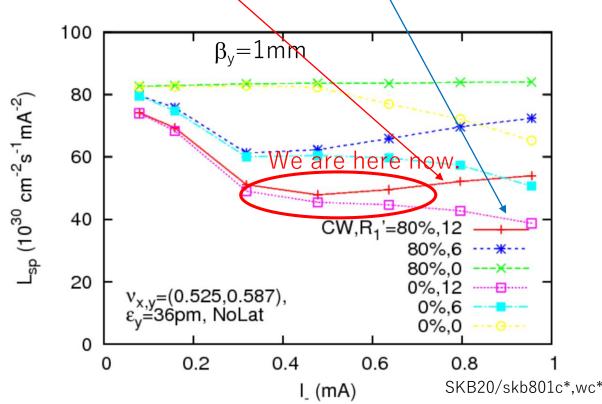

Chromatic beam size enlargement

$$\Delta \sigma_y = 0.28 \,\mu$$

A half strength of the Chromatic coupling, which can degrade the luminosity, exists.

R1'=12rad
$$\Delta \sigma_y = R_1(\delta) \sigma_x = 0.50 \,\mu\text{m}$$

R2'=3m $\Delta \sigma_y = \frac{R_2(\delta)}{\beta_x} \sigma_x = 0.62 \,\mu\text{m}$

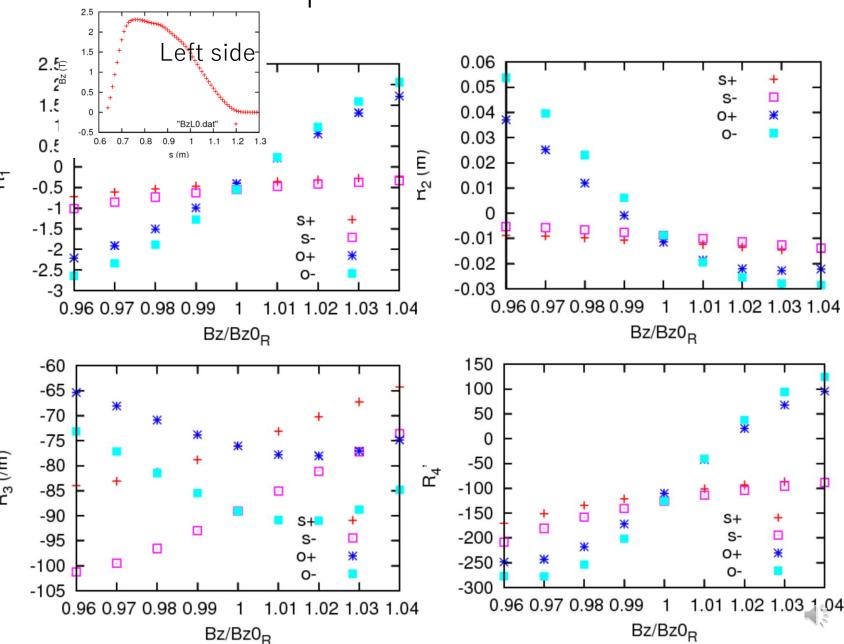


Weak-strong simulation for crab waist with chromatic coupling

• Lsp worsens in the low bunch current (<0.3mA) and then changes slowly for a large R1'=6, 12.

Lsp somewhat increase/decrease for Crab waist ON/OFF for

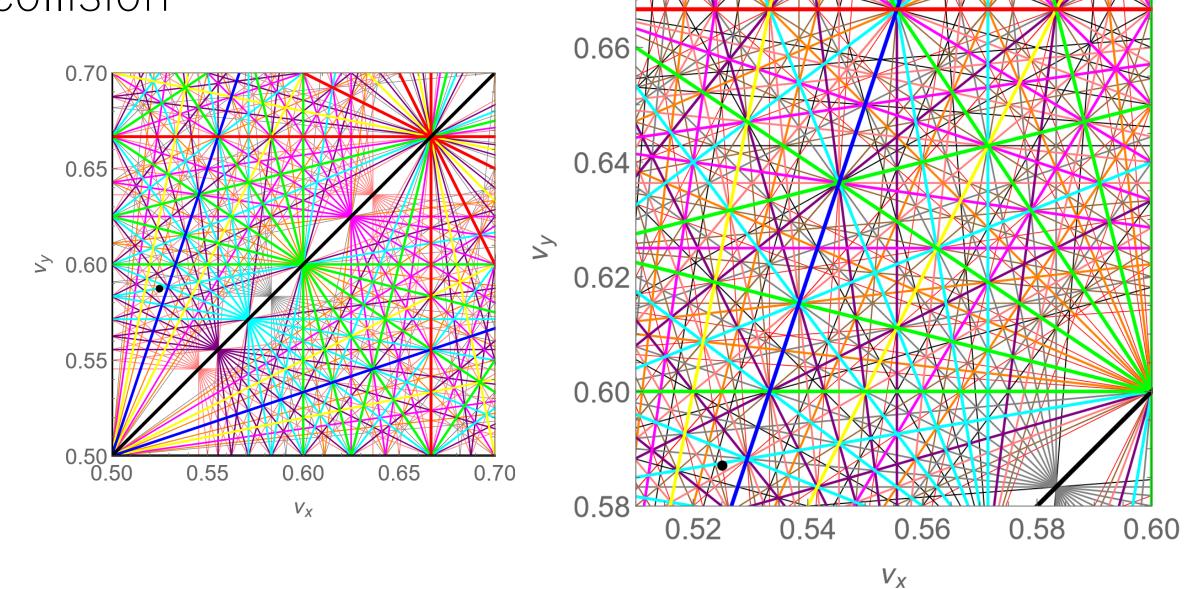
I>0.5mA.


R₁' correction using rotatable sextupoles

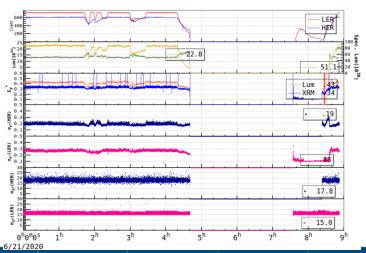
- SLY's contribute R1' dominantly. Target $R_1'=+-12$.
- 1st trial $R_1'+=3$, mainly using SLY in June 15, 2020.
 - Emittance increase in single beam.
 - Luminosity performance does not change remarkably, decrease 10%.
- 2^{nd} trial $R_1'+=0.5$ using all sextupoles since June 18 (H, Koiso).
 - Luminosity performance does not change remarkably.
- There is no clear evidence, in which R1' affects luminosity performance, yet.

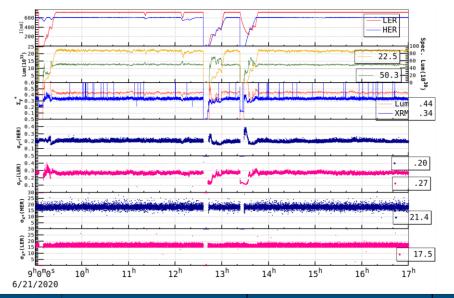
Effects of imperfection of compensation solenoids

- R'= $dR/d\delta$ vs Bz(ESLR)
- Change Bz uniformly with a factor.
- S: ESL, ESR are changed the same value.
- O: Opposite value.
- dp = +-0.1%,
- No large chromatic coupling appears for the imperfection of 4%.



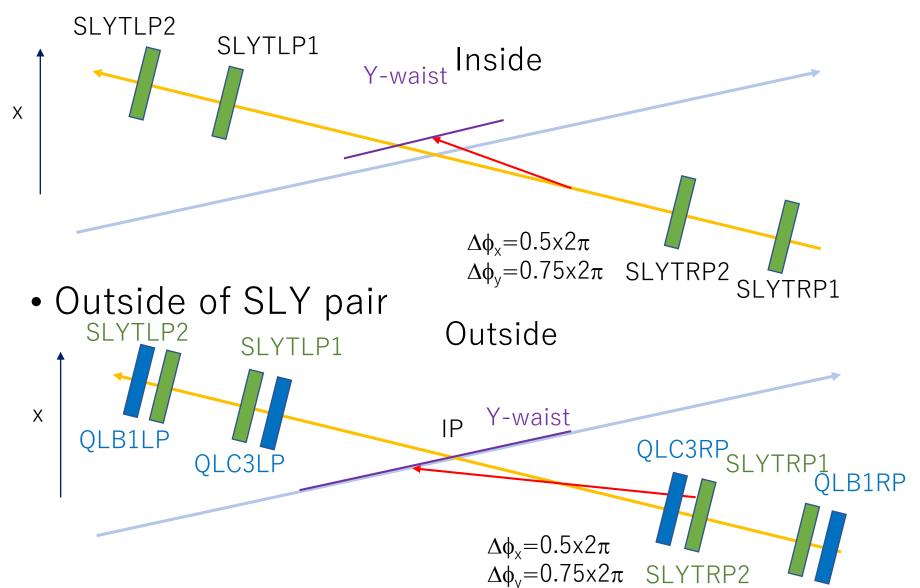
How to continue the crab waist operation


- Further high bunch current, squeezing further
 - Specific luminosity is almost constant at higher current 0.03mA.
 - Luminosity and beam-beam parameter increase if higher bunch current is available.
- Specific luminosity degradation at very low current.
 - Study of the degradation source, chromatic or nonlinear optics aberrations.
 - Correction of the aberrations
- For smaller beta, dynamic aperture may shrink due to IR nonlinearity.

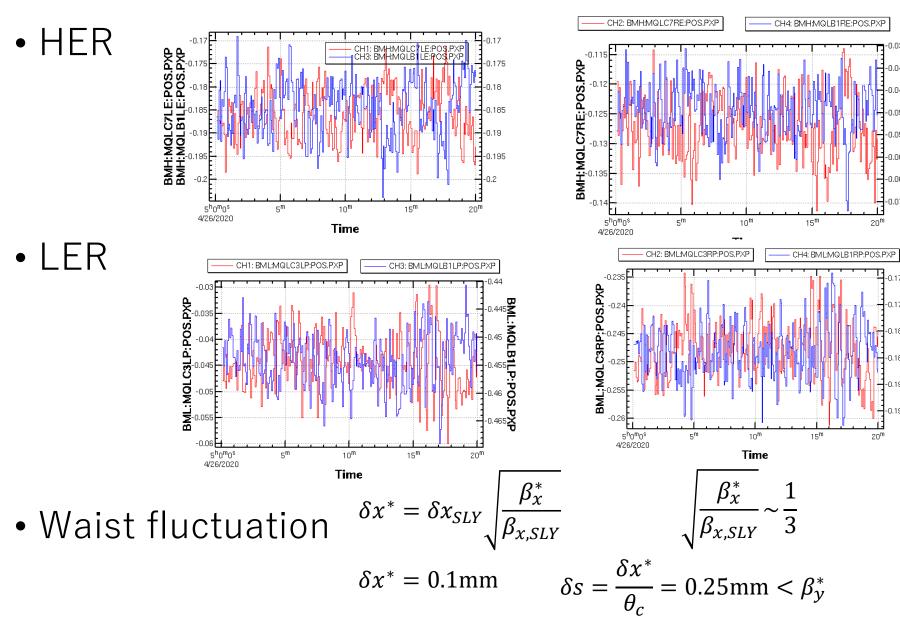

Why beam-beam blowup in low bunch current collision

Parameters and beam size at the best condition

6/21/2020				
June 21, 2020	LER	HER	Unit	Remarks
Beam current	712	607	mA	
Bunch current	0.728	0.621	mA	
Vertical size σ_{y}^{*}	0.27	0.20	XRM measurement	
Vertical cap sigma Σ _y *	0.3	336	μm	XRM meaurement
Σ	8.:	24	mm	estimated by Luminosity
Σ _z */√2	5	.8	mm	estimated by Luminosity co
Bunch length σ _z	4.6	5.1	mm	design (zero current)
Σ₂	6	.9	mm	design (zero current)



	SuperKEKB : June 21, 2020		SuperKEKB:	Unit	
Ring	LER	HER	LER	HER	
Emittance	4.0	4.6	2.0	4.6	nm
Beam Current	712	607	467	388	mA
Number of bunches	97	78	78	33	
Bunch current	0.728	0.621	0.597	0.496	mA
Horizontal size σ _x *	17.9	16.6	12.6	16.6	μm
Vertical cap sigma Σ _y *	0.4	103	0.4	μm*1	
Vertical size σ _y *	0.2	285	0.3	μm*2	
Betatron tunes v _x / v _y	45.523 / 43.581	44.531 / 41.577	44.525 / 46.590	45.534 / 43.567	
β _x * / β _y *	80 / 1.0	60 / 1.0	80 / 1.0	60 / 1.0	mm
Piwinski angle	13	15	18	15	
Crab Waist Ratio	80	40	0	0	%
Beam-Beam parameter ξ_y	m parameter ξ _y 0.0389 0.0261		0.0281 0.0193		
Specific luminosity	cific luminosity 5.43 x 10 ³¹		4.91 x 10 ³¹		cm ⁻² s ⁻¹ /mA ²
Luminosity	2.40 >	x 10 ³⁴	1.14 x 10 ³⁴		cm ⁻² s ⁻¹


Horizontal orbit

Inside of SLY pair

Horizontal orbit fluctuation at SLY

