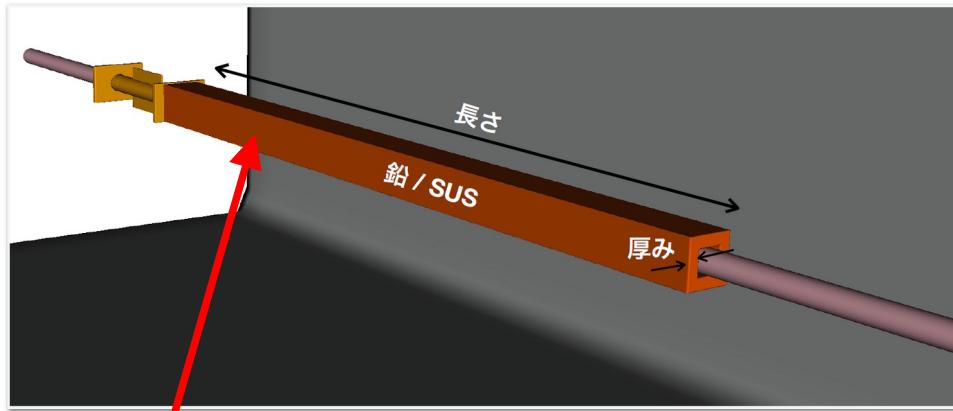


Progress of D05V1 Collimator Installation

2022/12/14
Akio Morita

What's NLC

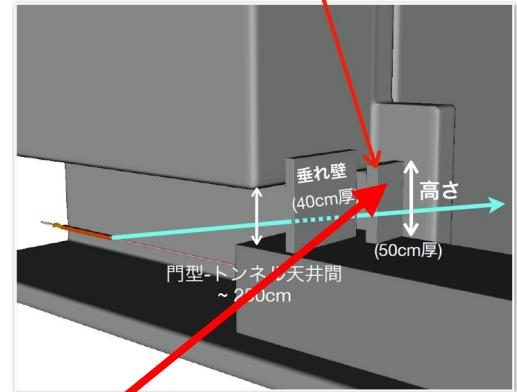
- NLC(Non Linear Collimator) is constructed by...
 - Quadratic(**Non Linear**) Kick by Skew Sextupole: $\Delta\theta_y \propto K2 (y^2-x^2)$
 - Quasi- $\pi/2$ Telescope: $L_{\text{tele.}} \equiv TM_{34}(\text{sext.} \rightarrow \text{coll.}) \Rightarrow \Delta y_{\text{coll.}} \propto L_{\text{tele.}} K2 (y^2-x^2)$
 - D05V1 **Collimator** with variable vertical aperture: $A_{\text{coll.}}$
 - Collimator kick factor correlates with $A_{\text{coll.}}^{-1}$ & $\beta_y^{\text{coll.}}$.
 - -I' cell for Skew Sextupole pair to hide quadratic kick from global beam dynamics
 - In minimum design, $TM_{34}(\text{sext.} \rightarrow \text{coll.})$ is constant of device geometry due to -I' cell matching.
 - $TM_{34}(\text{sext.} \rightarrow \text{coll.}) \sim (\beta_y^{\text{sext.}} \beta_y^{\text{coll.}})^{1/2}$
- Effective Normalized Vertical Aperture at Skew Sextupole: $N_{\text{eff}} \equiv A_{\text{sext.}} / \sigma_y^{\text{sext.}}$
 - $N_{\text{eff}}^2 \propto \frac{1}{L_{\text{tele.}} \varepsilon_y} \frac{A_{\text{coll.}}}{K2 \beta_y^{\text{sext.}}} \sim \frac{1}{L_{\text{tele.}}^3 \varepsilon_y} \frac{A_{\text{coll.}} \beta_y^{\text{coll.}}}{K2}$ $\sigma_y^{\text{sext.}} \equiv \sqrt{\varepsilon_y \beta_y^{\text{sext.}}}$, $|x| \ll |y|$
- Merit compared with usual collimator
 - Lower kick factor than usual collimator is available by choosing suitable skew sextupole strength & device geometry.

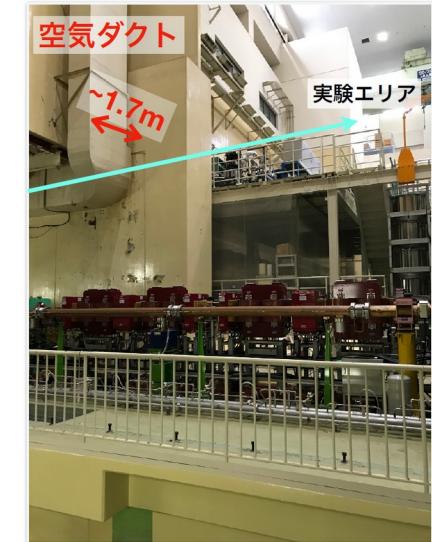

NLC Installation Side Effects

- Lose a part of damping wiggler units (10/56)
 - Longer damping time on default wiggler setting
 - Damping time COULD be recovered by wiggler strength, however, more heat load for wiggler vacuum pipes & heavier wiggler magnet PS load are expected.
- Require additional radiation shield for operation
 - Considering & Preparing additional shields:
 - Pb beam pipe cover
 - Concrete shield to cover air duct

Considering Additional Radiation Sheild

カバーシールド


- ビームパイプの上下左右を鉛またはSUSで覆う
- ビームパイプ：アルミ、厚み6mm（内径90mm、外径102mm）

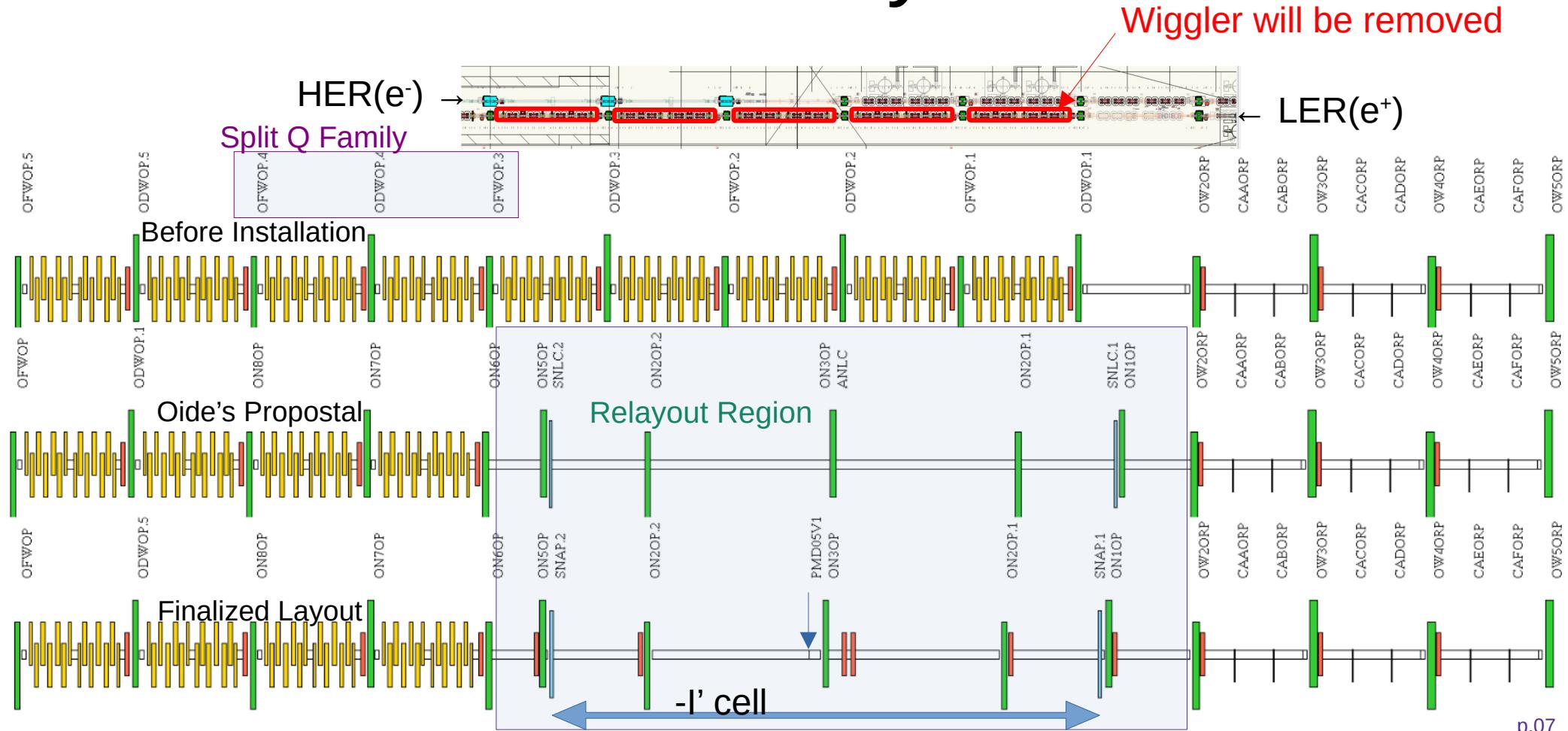

Pb Shield around Vacuum Pipe

垂れ壁横のコンクリートシールド

- 空気ダクトにより垂れ壁では塞げない領域が存在する
- それにより大穂の立ち入り可能な場所からビームラインが見える
- 隙間を塞ぐコンクリートシールドを置いた場合の線量変化を見る

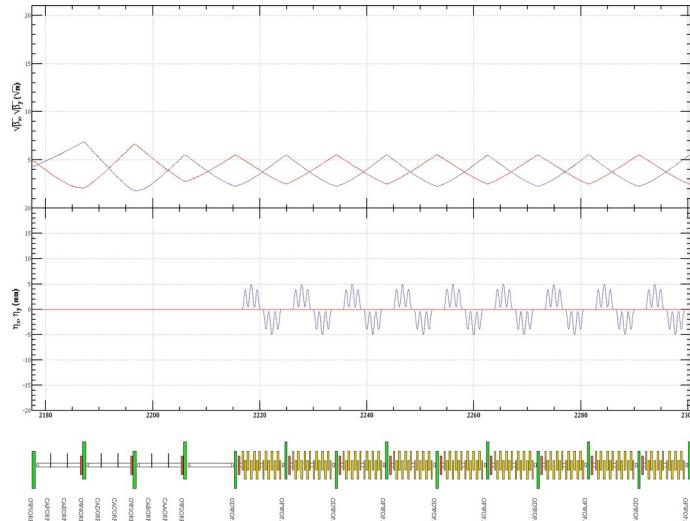
Concrete shield to cover air duct space

NLC Lattice Design Works

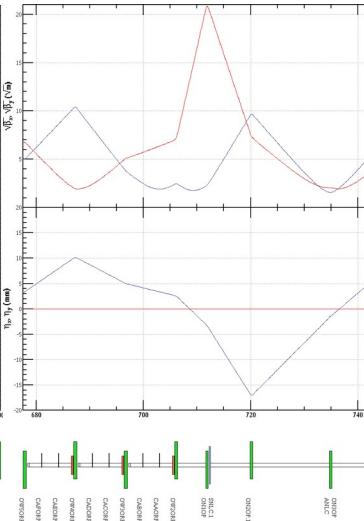

- Original lattice is proposed by Oide-san.
- Revise device layout for reusing vacuum pipes.
- Rearrange steering magnet position for vacuum components.
- Change D05V1 collimator install position to downstream side of center QUAD (QN3OP) of -I' cell for avoiding interference to HER beamline during collimator maintenance works.
- Finalize major component layout for device installation works.
 - Critical collimator performance regression due to D05V1 layout minor changes is not observed in BG simulation results.
 - Detail BG simulation to optimize optical parameters is ongoing by Andrii.

Checked Optics Issues

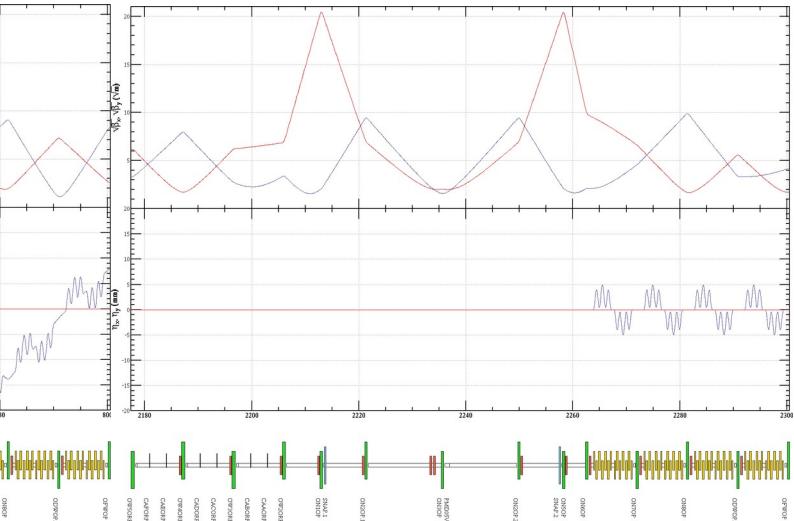
- Optimized Touscheck lifetime(DA) regression
 - Almost same lifetime is obtained at NLC off case.
 - 10% lifetime regression by NLC sextupole.
- Local Bump around D05V1 collimator for BG study etc...
 - A few millimeter bump height WOULD be available.
- BG dependence with D05V1 minor layout variation.
 - Typical checked D05V1 layouts:
 - D05V1 upstream of QN3OP
 - D05V1 downstream of QN3OP (*)
 - D05V1 between splitted QN3OP
 - Critical regression is detected in Andrii's BG simulation, therefore, we choose (*) layout suitable for collimator maintenance works.


Optimized Lifetime @ $\beta^*_y = 1\text{mm}$ (sec)				
CW	80%		60%	
κ	3%	2%	3%	2%
before	1405	1349	2092	1549
NLC(off)	1430	1336	2104	1837
NLC(on)	1274	1201	1769	1647

Device Layout


Optical Function

Before Installation



$\text{LER}(e^+) \rightarrow$

Oide's Proposal

Finalized Layout

Completed Construction Works

- Open & Remove concrete radiation shield blocks for construction works.
 - They WOULD be reinstalled in late August 2023.

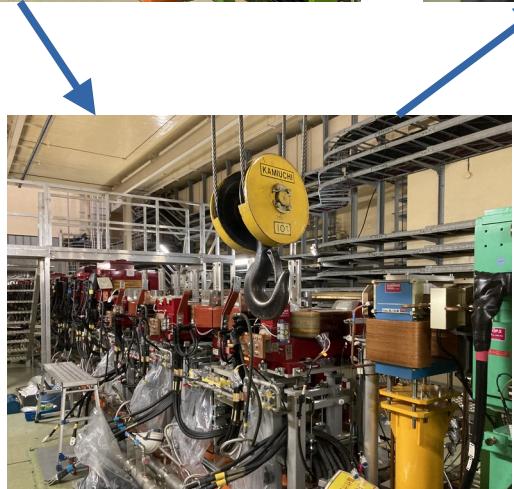
Ongoing Construction Works

- Remove 10 wiggler unit & vacuum pipes.
 - 50 dipole magnets (~ 6.5 ton)
 - 10 vacuum pipes
 - Wiggler magnet power cables (~ 3 ton)

Almost finished at this moment

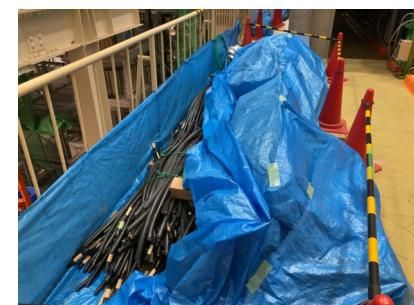
Wiggler Removal Works

Before removal works


Remove vacuum pipes

After removal works

Removed wiggler



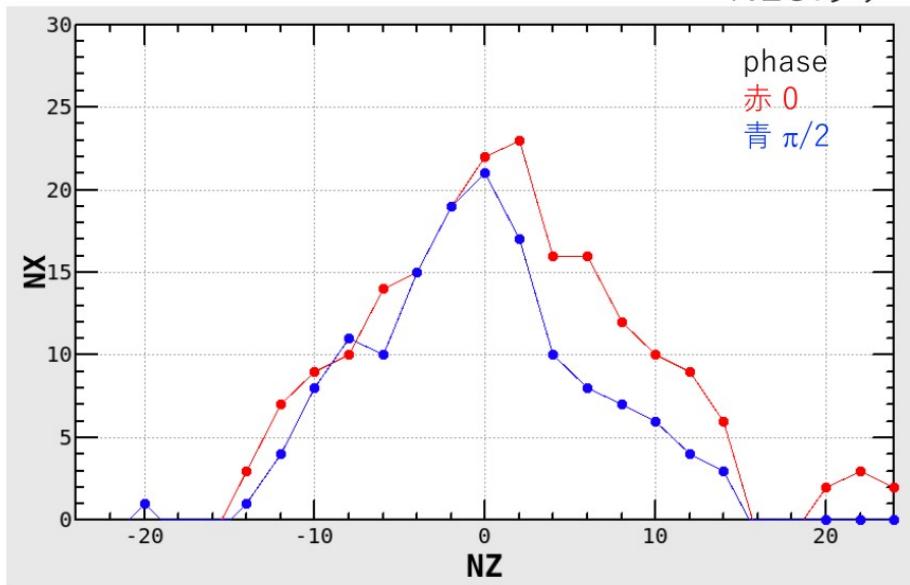
Detach upper pole for access

Restore upper pole for transfer

Removed cables

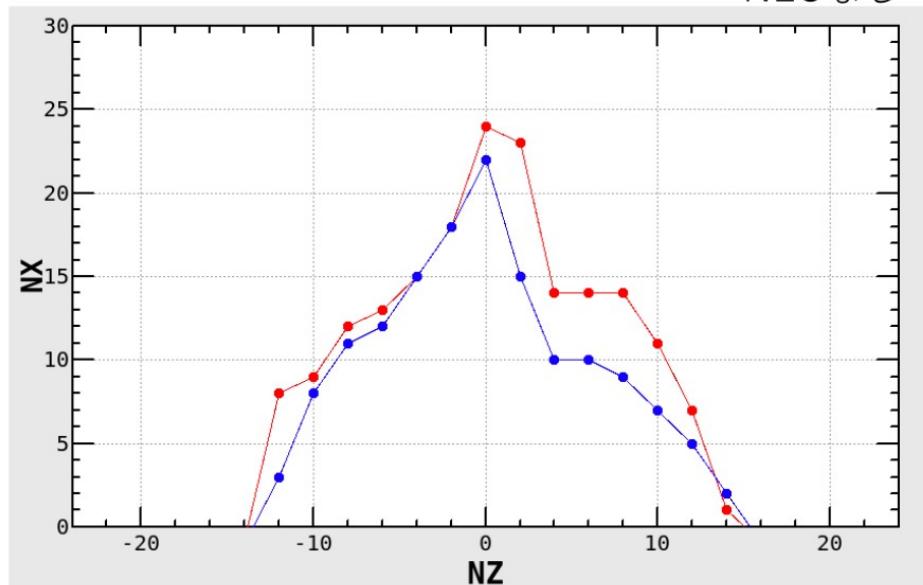
Upcoming Construction Schedule

Installation works are planned to complete until October 2023.


Year	2022										2023										
Month	12	01	02	03	04	05	06	07	08	09	10	11	12	01	02	03	04	05	06	07	
Wiggler		Removal				Cabling															
Quadrupole		Relocation		Cabling																	
Skew Sextupole		Magnet Material & Parts Preparation		Magnet mount Fabrication		Yoke Fabrication		Magnet Assembling		Field Measurement		Installation									
New Magnet PS		Fabrication			Adjustment																
PS Control System						Development & Deploy															
Vacuum Pipe		Production & Modification				Installation														Evacuation	
		TiN coating & Baking at Laboratory																			
Relocate Collimator	D03	V1 removal			D05	V1 installation															
Radiation Shield	Pb Shield				Material Preparation																
	Concrete Shield																				
Old Cable Removal		Wiggler		Quad																	

Backup(Optics Issue)

Dynamic aperture nonlinear collimator 有無


- 森田さんによる六極最適化後 (図はMINCOUP 3%, CW 80%の場合)
- NLCなしの方がやや寿命が長いが、大きな違いはない。

slер_1707_80_1_cw80_NL_03.sad

NLCあり

slер_1707_80_1_cw80_noNLC.sad

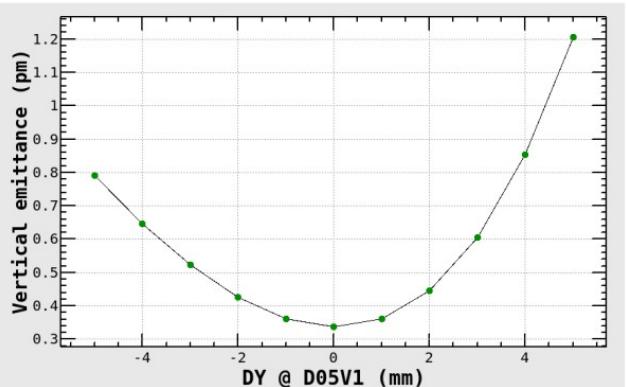
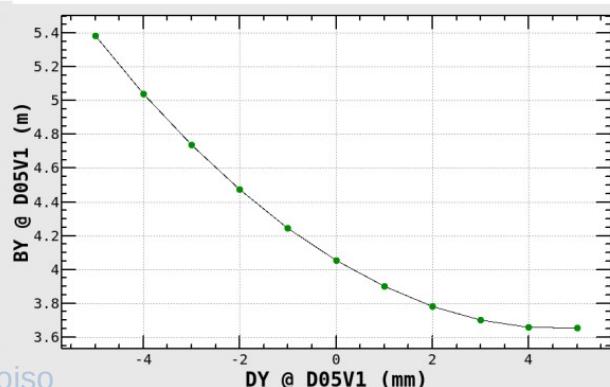
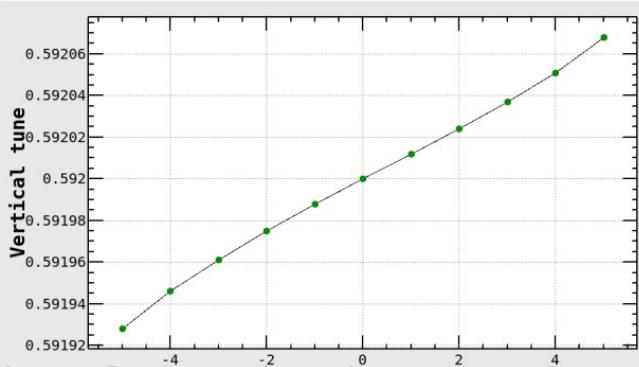
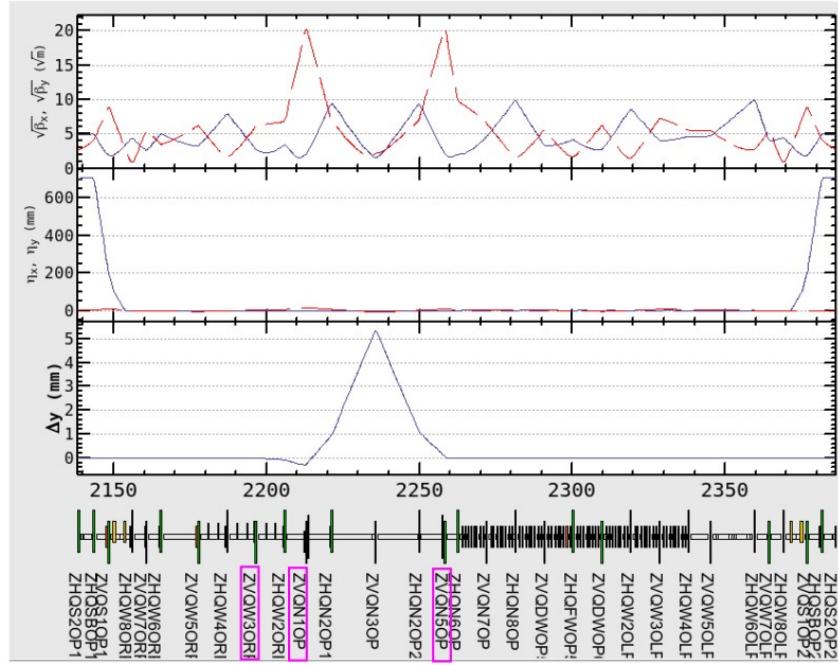
NLCなし

[slер_1707_80_1_cw80_NLC03.sad]
MINCOUP	CW = 80%	CW = 60%
3.0%	1273.9sec	1769.0sec
2.0%	1201.2sec	1646.8sec

[slер_1707_80_1_cw80_noNLC.sad]
MINCOUP	CW = 80%	CW = 60%
3.0%	1404.6sec	2091.9sec
2.0%	1349.0sec	1548.9sec

Local bump の影響

調整やスタディのためコリメータのところに一時的に **vertical bump** を立てる場合、歪6極ペアの外側の垂直ステアリングを使えば、オプティクスへの影響は許容範囲内に収まると思われる。





DY @ PMD05V1 = 5 mm の場合

ZVQW30RP K0 9.707086490E-6

ZVQN10P K0 -1.35986938E-4

ZVQN50P K0 -1.35052511E-4

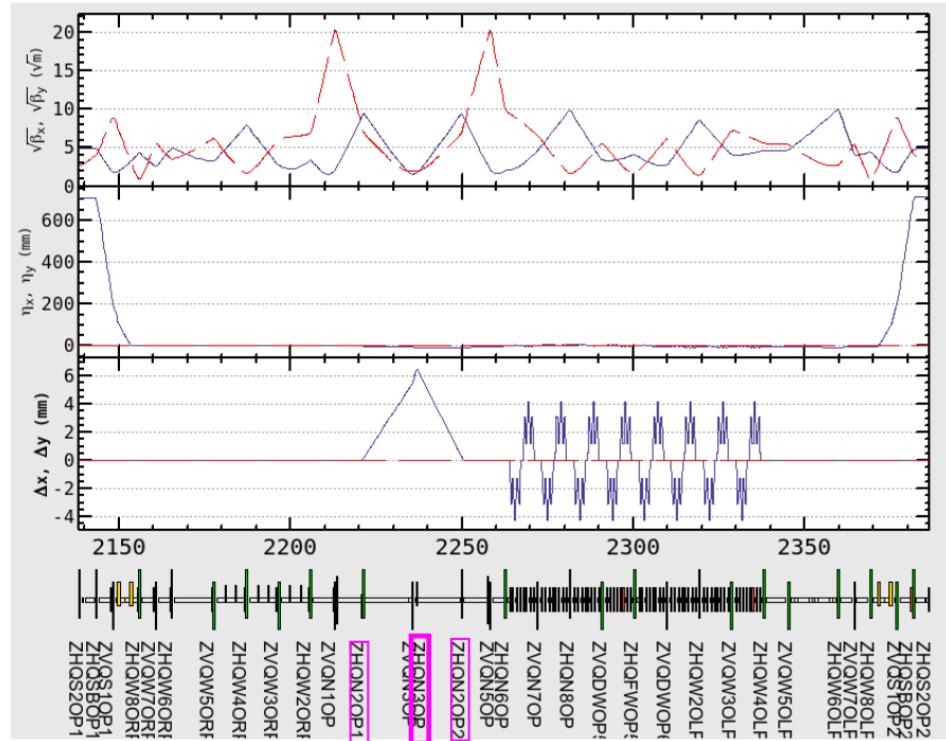
DY @ PSNAP1,2 = {-0.00015677, 0.00015672}

Local bump の影響

コリメータのところに **horizontal bump** を立てる場合

- 歪6極ペアの内側にもう1台水平ステアリングを追加すると（例えばZVQN30Pの隣）、歪6極に被らないバンプが立てられる。
- D05V1に5 mm のバンプを立てるには、~1.5 mrad のキック角が必要。

DX @ PMD05V1 = **5 mm** の例


ZHQN20P1 K0 -4.02252156E-4

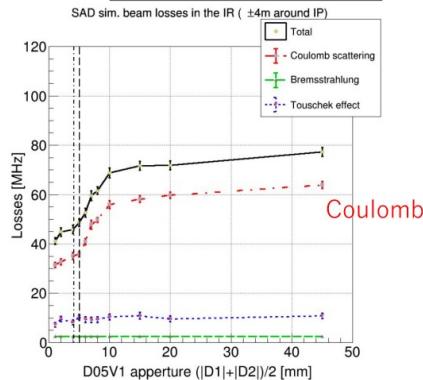
ZHQN30P K0 **.001482851389**

ZHQN20P2 K0 -5.23014504E-4

EMITX 3.96918E-9 -> 3.99730E-9 m

EMITY 3.3707E-13 -> 3.3706E-13 m

AX	BX	NX	EX	EPX	Element	Length	Value
1.67E-6	.08000	.00000	-2.6E-5	.00137	IP.1	.00000	0
.68473	3.55028	32.9951	-.00477	2.74E-4	PMD05V1	.00000	0
1.67E-6	.08000	44.5270	-2.6E-5	.00137	IP.2	.00000	0

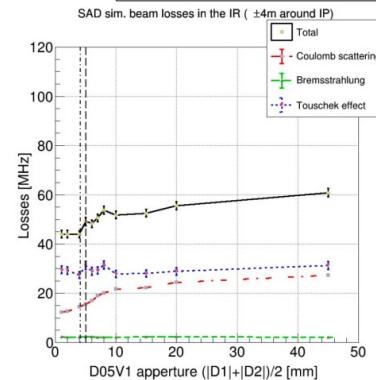

s(m)	AY	BY	NY	EY	EPY	DetR	#
.000000	-1.1E-5	.00100	.00000	1.6E-14	1.9E-13	4.E-24	1
2234.31091	.08511	4.05318	34.0408	-2.E-13	1.0E-14	5.E-24	5229
3016.30649	-1.1E-5	.00100	46.5920	1.8E-14	-1.E-12	5.E-24	7946

Oide's original

NLC aperture scan: 1705_nlc

Dec-20, 2021

- Beam losses reduction at the NI
 - Coulomb → 44% | Total (
- Beam losses reduction at the NI
 - Coulomb → 45% | Total (

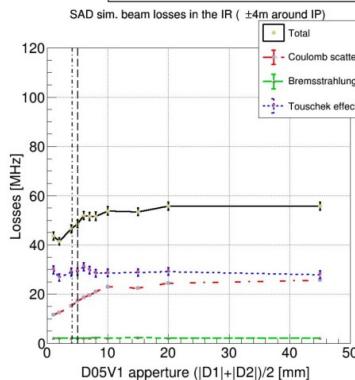


Reimplement on current lattice

NLC aperture scan: 1707_nlc_v01

Dec-20, 2021

- Beam losses reduction at the NI
 - Coulomb → 43% | Total (
- Beam losses reduction at the NI
 - Coulomb → 47% | Total (

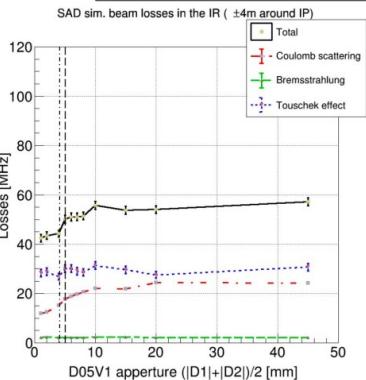


D05V1 upstream of QN3OP

NLC aperture scan: 1707_nlc_v04

Dec-20, 2021

- Beam losses reduction at the NI
 - Coulomb → 33% | Total (
- Beam losses reduction at the NI
 - Coulomb → 40% | Total (

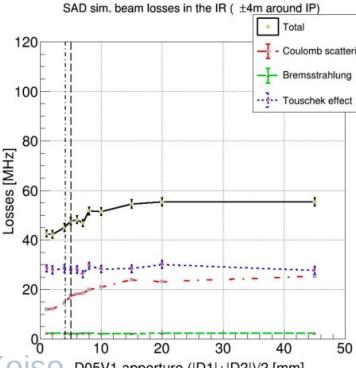


D05V1 downstream of QN3OP (*)

NLC aperture scan: 1707_nlc_v05

Dec-20, 2021

- Beam losses reduction at the NI
 - Coulomb → 27% | Total (
- Beam losses reduction at the NI
 - Coulomb → 37% | Total (

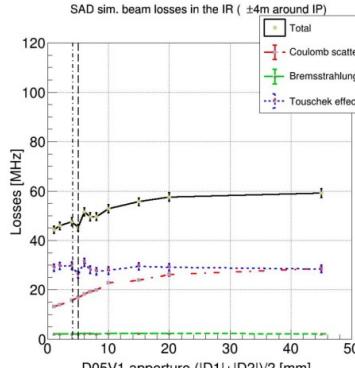


Remove drift between D05V1 & QN3OP

NLC aperture scan: 1707_nlc_v05a

Dec-20, 2021

- Beam losses reduction at the NI
 - Coulomb → 31% | Total (
- Beam losses reduction at the NI
 - Coulomb → 43% | Total (

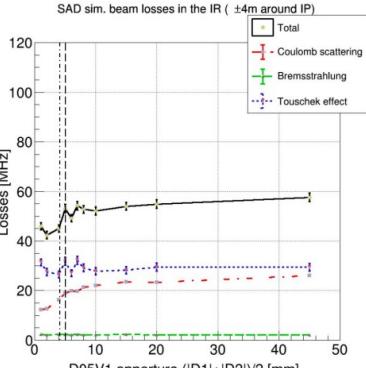


Adjust IP-D05V1 vertical phase to π

NLC aperture scan: 1707_nlc_v05b

Dec-20, 2021

- Beam losses reduction at the NI
 - Coulomb → 41% | Total (
- Beam losses reduction at the NI
 - Coulomb → 45% | Total (



D05V1 between splitted QN3OP

NLC aperture scan: 1707_nlc_v05x

Dec-20, 2021

- Beam losses reduction at the NI
 - Coulomb → 27% | Total (
- Beam losses reduction at the NI
 - Coulomb → 37% | Total (

Andriiさんの報告から
注目すべき部分（たぶん）
をまとめました

Shifted NLC impact on
storage beam losses,
Nov. 15, 2022
By Andrii Natochii

より

"LER optics for nonlinear collimator" p.5, H.Koiso
<http://kds.kek.jp/event/44526/>