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Introduction

In 2020, the positron (e+) source of the SuperKEKB (SKEKB) B-
Factory was upgraded to increase the positron yield.

*  Countermeasure against electric discharge for the AMD, installations of
steering magnets, and beam diagnostics.

There are three difficulties to install any beam diagnostics,

* in radiation hard environment, almost no space to install them, and difficult
technique to simultaneously and separately detect both secondary e- and e+
bunches with very short time interval.

A wideband beam monitors (WBMs) were successfully installed in
the e+ source.

In this report, the motivation for introducing WBMs, and their
detection technique, and some results are presented.
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The SKEKB e+ source
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1. Secondary e+e- bunches are immediately captured in the transverse phase space by applying strong pulsed
and DC magnetic fields. On the other hand, in the longitudinal direction they are captured by applying
electromagnetic fields in accelerating structures. The e- bunch is stopped by a beam stopper at a chicane and
the e+ bunch passes through it. The bunch charges are first measured by a standard BPM after the chicane.

2. One of the important issues for beam diagnostics is to simultaneously and separately detect parallel
travelling e+e- bunches with very short distances by two WBMSs in the capture section.

* How can we detect simultaneously and separately these secondary e- and e+ bunches?

*  Which detection technique is suitable, in time domain or frequency domain?

* What kinds of bunch characteristics for a single bunch are measurable? / \
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e- and e+ capture process in the e+ capture section
through dynamical phase-slip process

(b) Dynamical phase-slip process d time
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The line order for the e- and e+ bunches are generated with very short time intervals (At~ 0 - 300 ps)
depending on the capture phase.

10 understand the dynamical capture process, it is required to precisely measure the tl?? im‘qval At
between these two bunches.
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Historical detection technique in time domain
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Historical detection technique in frequency domain
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Fig. 3. BPM signal processing electronics

Conventional heterodyne technique with a early October of 1993.

fundamental 2856 MHz for e- and e+ 30-ns It is difficult to separately detect both
pulsed beams for a stripline bpm e- and e+ bunch characteristics.
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Choice from the viewpoint on the pros and

cons for detection techniques
To the best of my knowledge in 2018,

@ Based on the detection technique in time domain,

v Any high frequency signal losses for all rf components, transmission lines
and signal pickups should be fully corrected in sufficient wide bandwidth.

v" Is such a correction scheme possible in time domain?
v' How much bandwidth is required at minimum?

v" This technique gives a great advantage in comparison with that in
frequency domain?

2. Based on the detection technique in frequency domain,

v' any fundamental frequency is not a characteristic frequency for a single
bunch,

v and a heterodyne technique is not so advantageous for a single bunch in
comparison with a pulsed beam,

v' and it is difficult to separately detect both e- and e+ bunch charyte&istics.
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Wideband beam monitor (WBM)

2
3 “’
vy

" 4

Protrusion length of Imm for SMA feedthrough
antenna from the inner surface

v’ Simultaneous and separate detection for both e- and e+ bunches is possible in time domain
with any rf loss corrections for all rf components and transmission lines.

v’ Fundamental bunch characteristics, bunch interval, charges, transverse positions, and bunch
lengths can be separately measured for both e- and e+ bunches in time domain.
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Integrated WBM and steering magnets in a frame

Fixing structure of the

Dipole magnets and : Sy
P & frame in a solenoid coil

WBM fixed in a frame
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ch3

ch3

S i gnal detectio n System suitable frequency region by using a

All rf components should be corrected in

vector network analyzer.
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2. coax.2 (Fujikura Dia., 10D-HFB-CE) | v The cut-off frequency was fixed to 9.1 GHz

3. coax.3 (RG-223)
ch4

in the inverse FFT procedure.

Wideband oscilloscope
v’ Keysight Tech., BW13.5GHz, 40GSa/s.

v' Any signal waveforms can be corrected in
frequency domain and displayed pulse-by-
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Results of the signal detection in time domain

Differential signal

Raw signal
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Variations during the dynamical phase-slip process for
both the e+e- bunches depending on the capture phase
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(1) The separate detection for e-e+ bunches in time
domain was successfully performed.

(2) The travelling order of e-e+ bunches is reversed
at certain capture phases through the dynamical
phase-slip process.

(3) Some satellite bunches can be identified which
are 350ps apart from the main bunch. The
generation of satellite bunches is caused by spill-
over from the longitudinal phase space.

(4) The results show that quite symmetric
dynamical behaviors for both the bunch
characteristics were observed.

(5) The ringing waves following from the bunch
signals are due to wakefields from upstream
accelerator structures.
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Time interval measurements as a function of the capture phase
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Tsuyoshi Suwada, “Direct Observation of Positron Capture Process at the Positron Source of
the SuperKEKB B-Factory”; Scientific Reports 12, 18554 (2022). Published online 2022
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3D plots in the bunch characteristics as functions of time interval,
capture phase, and bunch intensity for e+e- bunches
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e+e- bunch characteristics depending on the capture phase
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Plots for both the e+e- bunch positions
at SP15-25 and SP16-25
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- It can be found that there are no characteristic differences in the transverse positions depending
on the capture phase under the nominal operation condition and those giving the maximum charges.
- It 1s interesting that the cluster for each bunch rotates in the transverse plane owing to their
cyclotron motion in the longitudinal direction between SP15-25 and SP16-25.
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Correlation plots for the time interval and bunch charges of both
e+e- bunches at SP15-25 and SP16-25
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* The time interval correlation is based on a 45° inclined line.

¢ This result means that the dynamical phase slip process was completed at the first WBM (SP15-25).

* The maximum charges are generated at the maximum time intervals even for the different bunches,
At~-268 ps (4t~-268 ps)@ acc. e- (acc. et), At~-264 ps (41~253 ps)@ dec. e- (dec. e+), resljctivily.
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Correlation plots for the bunch length and bunch charges of both
e+e- bunches at SP15-25 and SP16-25
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* Although the dynamical phase-slip process was fixed at the front WBM (SP15-25), the
dynamical exchange of particles in the longitudinal direction inside the bunch may be caused,
called bunch lengthening (or shortening).

« The correlation seems to be based on a 3"-order polynomial function in the accelerating
phase region, and on the other hand, that shows a bunch shortening in the decelerating phase
region.

* The maximum bunch charges are generated at the maximum bunch length. / \
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Variations in e+e- bunch charges as a function of the capture
phase at SP15-25 and SP16-25
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- The present operation point is not on an optimized point.
« The e+e- bunch charges in the accelerating phase region are greater than those in the

decelerating phase region in the capture section.
* The e+ yields at the peak points in the acc. and dec. phase regions are 122% and 84%

greater than that at the nominal operation point, respectivel). / \
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Conclusions

Direct simultaneous measurements of the secondary e+e- bunch
characteristics were successfully performed with WBMs at the e+
source of the SuperKEKB B-factory.

Longitudinal and transverse bunch characteristics were obtained for
each bunch as a function of the capture phase to investigate their
dynamical capture process under two-bunch acceleration scheme.

The results show that quite symmetric behaviors in the e—e+ bunch
characteristics were observed.

Such wideband detection techniques could be applied to conventional
and advanced e+ sources in future accelerator projects.

Based on this technique, the e+ intensity could be systematically
optimized 1n multidimensional parameter spaces towards high-
Intensity e+ sources.

7/ \
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Variations in the e+ bunch charges as a function of the capture
phase at SP15-25, SP16-25, and SP16-5
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« It is clear that the present operation point is not
on an optimized point.

* The e+ yield at the maximum point obtained by
a BPM after the capture section is only ~5%
greater than that at the nominal operation point.

« The capture phase at the max. e+ yield in the
capture section is shifted from that after the
capture section.

« The results show that only the e+ yield

e+ measurement at the location after the capture
section is not sufficient in the optimization
procedure. More detailed parameter tunings may
be required.
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Layout of the e+ source of the SKEKB injector linac

e+ Capture Section (15 m)

= SL16 (9.9 m) |
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- Total length of the capture section ~15 m

* Primary Ee- = 3.5 GeV, ~10 nC (single-bunch)

-Ee+ ~ 120 MeV after the capture section

- e+ target 14dmm-thick W

- Solenoidal fields of FC/BC 3.5/1.5 T

- Solenoidal fields of DC SLs 0.4 T(unit1-5) /0.5 T(unitl-6)

‘LAS Acc. gains 14-20 MV/m (unitl-5) / 10 MV/m (unitl-6)

- Wideband monitors (new for e+) and conventional BPMs (new for e-)

/. \
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The SuperKEKB B-Factory: an electron-
positron collider with asymmetric energies

Upgraded components for SuperKEKB

% Crab cavities
7

New beam pipe Ante-chambers,
& bellows comb-type bellows, HOM absorbers
—

More RF sources ,‘\]
—»-'T .

Upgrade of SuperBelle New QCS

SuperBelle (Final focus system)
¢ Crossing angle
New IR 22 mrad (KEKB)
— 30 mrad (SuperKEKB)

e” £E=4GeV

e E=7GeV

More RF cavities p ~
> 4

¢ S00m
-

Flux concentrator (Superconducting coil)

+ Cathode materials: CsTe, Labo\Cu + L-band capture section

100m S/ \
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Frequency characteristics for the bunch characteristics

145

a ————— 1 Time interval At between e- and
z f. ~10 GHz l { et bunches, f. ~10 GHz
] ~— | | systematic error
0 3 7| o4 =4 (20GHz) - 4 (10 GHz)
s E P I (my) Bunch lengths le- and le+
E 20 4 [e+ (rms) _ f;- NIO GHZ
~ " | systematic error
5 o, =1(25 GHz) - / (10 GHz)
f b Bunch charges Qe- and Qe+
g 3 .1 f.~20 GHz
ST <o | | systematic error
Lo 6,=0(25GHy) - 0 (20 GH)

f [GHz] Tsuyoshi Suwada, Muhammad Abdul Rehman, and Fusashi Miyal{ara,\‘First
. simultaneous detection of electron and positron bunches at the positron capture
section of the SuperKEKB factory”; Scientific Reports 11, 12751 (202b)g
Published online 2021 June 17. https://doi.org/10.1038/s41598-021-91707-0.

25-27 Mar. 2024, Tsuyoshi
Suwada/ KEK Acc.Lab.

SuperKEKB MAC@KEK



Frame for dipole and WBM

WBM support (upstream)
V WBM support (center)
‘ L STX/STY magnets

E

»
\ —
.v /
]

- ar. , Tsuyoshi Suwada
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capture section

Cable extraction

(left) Solenoid coil installed
the frame

/ \
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Dipole magnet and WBM fixed in a frame

1

Inserting a WBM and dipole magnet in
an aluminum frame

Extracting coax. cables with a bending
angle of 90° in the forward direction.

'\
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Integrated WBM and semi-rigid coaxial cables
filled with PEEK as an insulator

t’

Integrated aluminum frame

f' xed with WBM and dipole
? magnet

2m-long signal-extraction
coax. cable filled with an
insulator made of PEEK
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Typical measurement results of there different coax.
cables connected in series/amplitude and phase data

821 amplitude 821 phase
(a) 0 = (b) 240
[\ ] I —— Coax. total | ]
80 [HINHHII it I !
R | — (Rt At e |
S E; !m i »’| il I h i
= 0
- R Hil
3ol S | | | |
%) 30 _ 1) 0 H”‘\H"H' ||‘”|‘|IHH|‘\ “ \‘
—— PEEK semi-rigid | | |
wl | 10D coax. 'S
T | — RG-223 coax. " -160
— Coax. total 1 i
-50 I N R S T ] 2240 I T N T S ]
0 2 4 6 § 10 12 14 0 2 4 6 8 10 12 14
fGHz] f|GHz]
T. Suwada, “Characteristic Analysis of Wideband Beam Monitor with High Frequency Pickups™;
Rev. Sci. Instrum. 93, 093301 (2022) [DOI: 10.1063/5.0087321]. / \
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RF loss correction technique for pickups (1)

S 12/13/14
11

ch#2
O=m/2

fo | -—— out

12
S21

i)h;;t l13
out
. . . oo o
v’ rf'induced technique by which S21 between g Xclaion feedthrough ,AT

channels is measurable by a VNA ‘ hg!l;"lpm e i
v' T. Suwada, “Characteristic Analysis of Wideband g 0 d, k
Beam Monitor with High Frequency Pickups’; A :
Rev. Sci. Instrum. 93, 093301 (2022) [DOI: C- __________ 2“)
10.1063/5.0087321]. r T ] |
" El_l), output reference plane v rj’; :

OPEN b; 1 receiving feedthrough OPEN termination

termination
’fout /
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RF loss correcti
I > 1

in out

TE TE
V.. Z
0,11 0,11

>

-
=

= 3
—

A A
WO =[0000])=:
TININIE

TE

TE

'Fi"

i,21

i ou

| I I !
I:ZE| v ll' L™ I:Z;| ?
1 : ('1"()1 ! 1 ('1)4()1
™ ™ = - ™ ™
oS E s
3,01 I/I.()l — — I/(),()1 Z(},()l

Equivalent circuit model of WBM taking into
account electromagnetic couplings between
feedthrough electrodes. The couplings for
different modes are shown with different
colors.
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on technique for pickups (11)

50 |

|S21| [dB]

100 FlfH©

-150

0 2 4 6 8 10 12
f1GHz]

F_.
1TE41

{T™M21

Typical measurement results of amplitude
S21 between electrodes No. 1 and No. 2
(blue) [also No. 1 and No. 3 (red)].

/
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Electromagnetic coupling analysis

Detection principle
(a) TEM out . .
7EM in | ||| SMA feedirough F igure 3.
TEM,TE, TM

%M‘\g (a) Schematic drawing of electromagnetic couplings
between SMA feedthrough and coaxial structure.

b

®) Referenc’;",fiﬁﬁez"miba (b) Electromagnetic couplings between SMA feedthrough
T vy 'xh \ and a thin ring beam. Inner radius of the coaxial structure:
T IS0 | S a = 19 mm, ring-beam radius: b, radii of the SMA inner
_ rngbean ) gnd outer conductor: bi = 0.9 mm, bo = 2.05 mm, and the
idemrr s g CHATACEETIStic impedance of the SMA is Z, = 50 Q.
EM coupling Cyy, .
T vl v Figure 4: Equivalent circuit of electromagnetic couplings
O iam Z"% v between SMA feedthrough and coaxial structure. The
- arrows indicate the couplings between TEM (blue), TE
o . (red), and TM (green).

Tsuyoshi Suwada, “Modal Analysis of Electromagnetic Couplings between SMA-Feedthrough Electrode and Beam for Wideband

Beam Monitor”; Poster presented at the 10th International Beam Instrumentation Conference (IBIC2021), Video meeting hosted by
PAL, Korea, Sep. 13-16, 2021 (WEPP12). / \
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(@)

11€]

+Z
TEM TMmn

Re[Z

Numerical results

Calculations of input impedances for

TEMATE and TEM+TM modes
5107 m—— F— Figure 5:
modes(m =5,n= . . . .
— (a) Variations in the input
e o, -2mm impedance (TEM+TE
6, =4mm .
3 ]0-2 Gh*l’vmm mOdeS) aS a funCtZOn
of frequency and the
. JM beam size.
e %
o o o ®
0 1 1 1 1
0 5 10 15 20 25 30
f1GHz]

TMmodes (m =5,n=1)
max

n @ @ e

0 5 0 15
fIGHz]

20 25 30

(b) Variations in that
(TEM+TM modes) as a
function of frequency and
the beam size.

The subscripts n and
maximum m are fixed to 1
and 5, respectively.

The extruding length
fixed to 1 mm.

is

+ ZTEmn] [Q] 3

TEM

Re[Z

—~

b)

+ ZTan] [Q]

TEM

Re[Z

TEmodes (m =5,n=1)
max

)

@

o @@

510 15
f1GHz]

20 25 30

J—-

TM modes (m =5,n=1)
max

6 =1lmm

G, =2mm

c =4mm

c, = 6mm

) oy @ @ 0

0

510 15
Sf1GHz]

20 25 30

Figure 6:
Variations in the coupling
strengths  between  the
TEM modes as a function
of frequency and the
beam size.

Figure 7:

Variations in the coupling
strengths  between  the
TEM modes as functions
of frequency and the
length. The transverse
charge distribution of o,
=4 mm is fixed.

Tsuyoshi Suwada, “Modal Analysis of Electromagnetic Couplings between SMA-Feedthrough Electrode and Beam for Wideband
Beam Monitor”; Poster presented at the 10th International Beam Instrumentation Conference (IBIC2021), Video meeting hosted by
PAL, Korea, Sep. 13-16, 2021 (WEPP12).
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